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Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intel-
lectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a
large number of molecular clues, it has proven difficult to generate specific hypotheses without
the corresponding datasets at the protein complex and functional pathway level. Here, we describe
one path forward—an initiative aimed at mapping the physical and genetic interaction networks of
these conditions and then using these maps to connect the genomic data to neurobiology and, ul-
timately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiol-
ogists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and
creating a collaborative infrastructure necessary for long-term investigation. This initiative will ulti-
mately intersect with parallel studies that focus on other diseases, as there is a significant overlap
with genes implicated in cancer, infectious disease, and congenital heart defects.
The global burden of mental illness is enormous, whether

measured in health care expenditures, lost productivity, or per-

sonal suffering. Worldwide, mental and substance use disorders
rank number five among the top 10 categories contributing to

overall disease burden as measured by global disability-

adjusted life years (DALYs) and are the leading cause of non-fatal
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burden of disease (Whiteford et al., 2013). In the United States,

neuropsychiatric disorders (NPDs) as a group account for 6 of

the top 30 leading contributors to DALYs, and total costs exceed

those of any other area of medicine (Murray et al., 2013; White-

ford et al., 2013). This public health emergency is exacerbated

by poor access to care, particularly in much of the developing

world, persistent stigma that still plagues those suffering from

these conditions, aswell as their families, a striking lack of insight

into the underlying pathobiology of these syndromes, and a

limited armamentarium of efficacious treatments (Krystal and

State, 2014).

Recent advances in gene discovery have set the stage for a

transformation in our understanding of NPDs. A confluence of

high-throughput genomic technologies, team science, and

very large patient cohorts has identified dozens of definitive

risk alleles and genes for many NPDs (Lehner et al., 2015).

The importance of this recent shift in neuropsychiatric ge-

netics—away from unreliable candidate gene studies to highly

reproducible exome-wide and genome-wide methodologies—

cannot be overstated. For the first time, the scientific commu-

nity has access to an expanding set of reliable molecular

clues to the etiology of NPDs including autism spectrum

disorders (ASD), intellectual disability (ID), epilepsy (EP) and

epileptic encephalopathies (EE), Tourette disorder (TD), atten-

tion-deficit/hyperactivity disorder (ADHD), obsessive-compul-

sive disorder (OCD), schizophrenia (SCZ), bipolar disorder

(BD), major depressive disorder (MDD), and developmental dis-

orders (DDs) as a group.

While there is justifiable excitement about the progress in gene

discovery, translating these findings to an understanding of the

underlying pathobiology of NPDs remains largely unrealized.

This is due to multiple factors. First, risk-associated genetic var-

iants likely affect brain development, an extraordinarily complex

process wherein our understanding of molecular, cellular, and

circuit level organization is strikingly limited (Figure 1). Further-

more, many of the causal genes likely have pleiotropic biological

effects. Consequently, the pertinence of a phenotype down-

stream of a disease-associated perturbation in a model system

is unclear. Second, the proximal cause of NPD is likely alterations

in activity patterns in the neural circuits that support mental pro-

cesses; linking genes to these alterations requires that we under-
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stand the relevant underlying biological pathways, the corre-

sponding cell types and neural circuits in which these pathways

are present, and the complex interactions between the pathways

and the circuits underlying these conditions. Only then will we be

able to predict the developmental consequences of risk-associ-

ated genetic variants, as well as understand if the resulting

changes are actionable later in life. This is a difficult challenge

given the functional diversity of genes, cells, and circuits associ-

ated with NPDs, and our relatively limited knowledge of pathobi-

ology with which to make sense of this diversity.

One particularly promising approach to addressing this

challenge rests on the notion of convergence. A convergent

framework posits that multiple diverse biological perturbations

carrying risk for a given disorder are likely to converge mecha-

nistically in the path from genome to clinical phenotype (Gesch-

wind and State, 2015; State and �Sestan, 2012; Willsey and

State, 2015). Importantly, this common pathway can manifest

at many levels, from gene and protein networks within a cell

to common patterns of neuronal network dysfunction that man-

ifest in the complex distributed networks of the brain. Indeed, it

is now clear that across individuals, similar functional networks

can be built out of cells that have widely varying patterns of

gene and protein expression (Prinz et al., 2004). The converse

is also likely to be true: dysfunctional networks may show com-

mon modes of dysfunction that arise from very different cellular-

level pathways.

Accordingly, parallel investigationsofmultiple genes andmuta-

tions are critical. Ideally, such studies would yield functional data

for all NPD risk genes and alleles across multiple levels of investi-

gation, including molecular, cell taxonomic, morphological, and

neural circuit. Data would include both spatial and temporal di-

mensions, with a particular focus on function in human brain

development. Such data would likely identify the strongest points

of functional convergence, the most relevant pathobiology, and

an understanding of the functional connections between risk-

associated genes. The utility of this knowledge is exemplified in

hypertension: large effect mutations converged on salt handling

in the kidney, with vectoral effects predicting direction of blood

pressure, greatly informing therapy (Lifton et al., 2001).

To date, functional data of NPD risk genes remains strikingly

limited across many levels, including the protein level. While
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Figure 1. Levels of Pathogenesis and

Analysis
This figure outlines the different levels on which a
disorder could manifest or be investigated, starting
from a genetic variant (displayed in red). It includes
future parallel investigation in both in vitro and in vivo
model systems across levels of complexity (.e.g.
human induced pluripotent stem cells, Xenopus
tropicalis tadpoles, mice, etc.). While much head-
way has been made in characterizing the genetic
architecture of neuropsychiatric disorders, many of
the other levels of analysis remain poorly under-
stood. The ‘‘bottom-up’’ approach discussed here
targets the basic levels of this hierarchy, building a
strong foundation for the translation of genetics to
a higher level of biological understanding. ‘‘Top-
down’’ and ‘‘middle-out’’ approaches will be critical
as well.
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emerging datasets exist that allow one to trace the expression of

any gene transcribed in the developing and adult human brain

and, consequently, to investigate convergence across risk

genes (Tebbenkamp et al., 2014; Willsey and State, 2015), we

still lack foundational data regarding how the proteins encoded

by risk-associated genes interact with other proteins, or DNA.

Moreover, we do not understand how the vast majority of risk-

associated mutations alter protein structure, function, and phys-

ical interactions. Because perturbations of the coding genome

strongly contribute to NPD risk (Cappi et al., 2017; Deciphering

Developmental Disorders Study, 2017; EuroEPINOMICS-RES

Consortium et al., 2014; Fromer et al., 2014; Hamdan et al.,

2014; de Ligt et al., 2012; Rauch et al., 2012; Sanders et al.,

2015; Satterstrom et al., 2018; Willsey et al., 2017), determining

how genetic variations impact these domains should be a high

priority.

Fortunately, much of the technology needed to build such re-

sources already exists, and therefore, it is time to establish NPD

initiatives similar to the Cancer Cell Mapping Initiative (CCMI;

http://www.ccmi.org) (Krogan et al., 2015) and the Host Path-

ogen Mapping Initiative (HPMI; http://hpmi.ucsf.edu). For

example, our group has recently formed the Psychiatric Cell

Map Initiative (PCMI; http://pcmi.ucsf.edu), which is focused

on a number of NPDs. Each of these initiatives aim to (1) compre-

hensively map the networks of physical interactions among rele-

vant proteins; (2) map the genetic interactions between risk

genes; and (3) establish computational tools to reveal higher or-

der relationships (Figure 2). As described below, we propose

starting with ASD and other early-onset NPDs, due to the sub-

stantial number of risk genes of large effect already identified.

We argue that these efforts are a critical component of an even

broader effort that would understand how these interactions

alter neuronal circuit function and behavior and how eventual

integration with other data sources (e.g., patient data) has the

potential to lead to new and rationally designed treatments

for NPD.

The Current State of Gene Discovery in
Neuropsychiatric Disorders
Unprecedented progress has beenmade recently in the genetics

and genomics of NPDs (Figure 3A). Multiple definitive risk-car-

rying copy number variations (CNVs), protein-altering mutations,

and/or non-coding alleles have been identified in ASD, ID, EP,

EE, TD, SCZ, MDD, BD and other disorders such as structural

brain abnormalities (Bilgüvar et al., 2010; Cross-Disorder Group

of the Psychiatric Genomics Consortium, 2013; Deciphering

Developmental Disorders Study, 2017; Wray et al., 2018; Euro

EPINOMICS-RES Consortium et al., 2014; Fromer et al., 2014;

Hamdan et al., 2014; Hou et al., 2016; Huang et al., 2017; Inter-

national League Against Epilepsy Consortium on Complex Epi-

lepsies, 2014; Kataoka et al., 2016; de Ligt et al., 2012; Power

et al., 2017; Rauch et al., 2012; Sanders et al., 2015; Schizo-

phrenia Working Group of the Psychiatric Genomics Con-

sortium, 2014; Willsey et al., 2017). Additional progress is immi-

nent in characterizing the underlying genetics of OCD (Cappi

et al., 2017; International Obsessive Compulsive Disorder Foun-

dation Genetics Collaborative [IOCDF-GC] and OCD Collabora-

tive Genetics Association Studies [OCGAS], 2017), ADHD
508 Cell 174, July 26, 2018
(Garcia-Martı́nez et al., 2017; Satterstrom et al., 2018), and other

NPDs. Much of this progress is due to technological and meth-

odological advances, and parallel changes in the culture of sci-

ence, such as team science and open data sharing (Lehner

et al., 2015). The large-scale studies that have resulted, com-

bined with high-throughput and cost-effective genomic assays,

have been the key to reproducible and reliable gene discovery.

Success in identifying specific genetic risk factors has

emerged in two broad areas: (1) discovery of rare, large effect

de novo variants affecting the coding regions of the genome

(Figure 3A), and (2) identification of common variants of small ef-

fect, often mapping to the non-coding genome. Initial insights

from successful genomic investigations suggest that while

each disorder involves a wide variety of risk allele types, the spe-

cific architecture of different syndromes varies considerably. For

example, for ASD, ID, TD, and EE, the lion’s share of progress in

identifying specific loci has been via the identification of highly

penetrant de novo protein-altering mutations and genic CNVs

(Figure 3A) (EuroEPINOMICS-RES Consortium et al., 2014;

Hamdan et al., 2014; Sanders et al., 2015; Willsey et al., 2017).

Conversely, for SCZ, MDD, EP, and BD, much of the progress

has emerged from genome-wide association studies (GWAS)

focusing on common alleles of small individual effect (Wray

et al., 2018; Hou et al., 2016; International League Against Epi-

lepsy Consortium on Complex Epilepsies, 2014; Power et al.,

2017; Schizophrenia Working Group of the Psychiatric Geno-

mics Consortium, 2014). The trajectory of discovery for OCD,

ADHD, post-traumatic stress disorder (PTSD), anxiety, and

eating disorders is not yet clear. The enrichment of rare variants

with large effect size within certain NPDs (ASD, TD, ID, EE) may

be reflective of greater phenotypic severity and earlier onset of

these disorders (i.e., in early childhood versus adulthood), the

combination of which could contribute to a larger impairment

of reproductive fitness. In this situation, common variants of rela-

tively high frequency would be unlikely due to selection pressure.

Nonetheless, there is striking overlap of genes with rare de novo

damaging mutations (Cappi et al., 2017; Fromer et al., 2014;

Sanders et al., 2015; Satterstrom et al., 2018) (Figure 3; Tables

S2 and S3), genes found in large multigenic CNVs (Sanders

et al., 2015), and common variants implicated by GWAS across

these conditions (Autism Spectrum Disorders Working Group of

The Psychiatric Genomics Consortium, 2017; Cross-Disorder

Group of the Psychiatric Genomics Consortium, 2013; Cross-

Disorder Group of the Psychiatric Genomics Consortium et al.,

2013). As additional genetic data accumulate in these condi-

tions, a growing list of risk genes will be identified, generating

new opportunities to understand individual NPDs as well as the

relationships between them. Given the overlap in risks already

observed between these conditions, we anticipate discovery of

converging pathobiological mechanisms not only within disor-

ders, but also across them.

In ASD, for example, studies leveraging the statistical power

afforded by rare de novo putatively damaging variants have iden-

tified more than 65 strongly associated genes (Sanders et al.,

2015). The most deleterious variants (likely gene disrupting or

LGD) in the highest confidence subset of these genes (n = 30)

as a group confer �20-fold increases in risk, with LGD variants

in the highest confidence genes carrying even greater risks. To

http://www.ccmi.org
http://hpmi.ucsf.edu
http://pcmi.ucsf.edu


Figure 2. Conceptual Overview of a Bottom-

Up Approach
The objective of a ‘‘bottom-up’’ approach, such as
the one depicted here, is to translate genetic find-
ings to specific insights about pathobiology of
neuropsychiatric disorders. The first step is the
identification of specific genes. To date, the majority
of gene-level discoveries have been made through
the study of high effect-size de novo variants (top).
An example association graph is displayed in the
second panel, with contributions from different
classes of variants shown per gene (yellow versus
blue; e.g., missense versus nonsense variants).
G1–G10 represent generic genes or the proteins
they encode, and T1–T3 transcription factors. ‘‘GN’’
represents a novel gene implicated through network
analyses. There are three main types of interaction
networks that could be mapped: protein-protein
interaction (PPI), protein-DNA interaction (PDI), and
genetic interaction (GI) networks (middle panels).
The PPI networks will identify protein complexes
(thick edges) as well as relationships between
complexes (thin edges). Similarly, PDI networks
would identify connections that correspond to
putative regulatory relationships between proteins
and DNA regulatory regions of other genes (e.g.,
‘‘G4-R’’). GI networks would identify functional
relationships between genes with directionality
(red indicates positive interactions, blue negative
interactions). These orthogonal datasets should
ultimately be integrated, in the context of a
cell, to generate a pathway-level understanding
(bottom panel). These hypotheses should then be
followed up with cellular phenotyping and validation
experiments.
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date, there is very little evidence for a multi-hit hypothesis vis-á-

vis these highly damaging de novo coding mutations. Indeed, a

single highly protein-disrupting mutation appears sufficient to

confer these very large risks, almost certainly operating in

conjunction with a polygenic background of common alleles.

The strong effects imparted by heterozygous LGD variants im-

plies that haploinsufficiency is a predominant mechanism of

pathogenesis. Indeed, in more than half of the top 65 ASD-asso-

ciated genes heterozygous LGDmutations are predicted to pro-

duce haploinsufficient phenotypes based on the paucity of these

mutations in large databases (34 of the 57 represented in the da-

taset or 52.31%). This represents a strong enrichment compared

to the rate of 18.65% (2,984 of 15,998 genes) observed genome-

wide (p = 7.8 3 10�12, hypergeometric test) (Cassa et al., 2017).

A lack of recurrent variants at the same position also makes it

unlikely that these variants are contributing risk through gain of

function.

Challenges of Moving from Genes to Pathobiology
A driving motivation for gene discovery is the hope that existing

knowledge about newly identified genes will inform our under-

standing of the underlying pathobiology of a given disorder.

However, there are numerous challenges in translating genetic

findings into an actionable understanding. These challenges

differ somewhat based on the types of genetic changes that

have been discovered. First, the number of genes involved in

each disorder is quite large. For example, with respect to rare

mutations of large effect there are 100s to 1,000s in ASD and

TD (Sanders et al., 2015; Willsey et al., 2017). Second, disruption

of each gene may impart multiple, context-dependent effects

(pleiotropy) that manifest at multiple levels of organization of

the brain. These effects may also show variable expressivity,

particularly in the setting of dosage effects, resulting in varied

phenotypic consequence. As a result, it can be difficult to

pinpoint the relevant pathobiology among many potential down-

stream perturbations. Third, the human brain is a tremendously

complex organ, and the inaccessibility of this tissue coupled

with incomplete knowledge of its molecular-, cellular-, and cir-

cuit-level organization further complicates understanding the

roles that specific genes play in these various levels. Together,

these are substantial barriers in generating and testing pathobio-

logical hypotheses and, ultimately, developing rational, targeted
Figure 3. Neuropsychiatric Disorder Genes Overlap with Other Disord
(A) Risk genes, identified from de novo variants, overlap across NPDs.We utilized
<0.1) for autism spectrum disorders (ASD), intellectual disability (ID), epilepti
obsessive-compulsive disorder (OCD) (Table S1). We considered de novo variant
FDRs (He et al., 2013). We omitted targeted sequencing studies in order to gener
coding variants only as non-coding variants are outside of the scope of this review
are excluded), and the sizes of the ovals are proportional to the number of genes i
ASD and EE strongly overlap. Each p value is corrected for multiple comparisons.
in the EE studies, probands with moderate-to-severe developmental impairment,
seizures were excluded. Therefore, the observed overlaps may underestimate th
based on de novo (rare) variants. Hence, the well-documented genetic overlap a
(B) NPD genes, identified from de novo variants, overlap with other disorders a
congenital heart disease (CHD). We also generated a combined list of NPD genes,
identified from analyzing the deciphering developmental disorders (DDD) studie
geneswere omitted from (A) becausemany of the NPDs are represented in this co
cancer genes from the Cancer Gene Census (Futreal et al., 2004) and Host-Patho
(Table S1; Data S1). High confidence NPD genes significantly overlap with eac
between NPD initiatives and the Cancer Cell Map Initiative (CCMI), the Host Pat
therapeutics. Investigation of common variants of small effect

suffers from all of these issues and further adds extreme polyge-

nicity, difficulty in identifying main versus interactive effects, and

linking (mostly non-coding) variants to specific genes.

Neurodegenerative diseases exemplify the challenge of trans-

lating genetic findings into specific biological underpinnings and

corresponding therapeutic interventions. Tremendous progress

has been made in identifying genetic risk factors, including auto-

somal dominant genetic determinants likeHTT in Huntington dis-

ease (The Huntington’s Disease Collaborative Research Group,

1993) or APP, PSEN1, and PSEN2 in Alzheimer’s disease (Goate

et al., 1991; Levy-Lahad et al., 1995; Sherrington et al., 1995) and

powerful, semi-dominant risk factors such as APOE4 (Corder

et al., 1993; Strittmatter et al., 1993). However, the development

of effective treatments during the past 30 years has eluded the

field of neurodegeneration despite considerable progress in un-

derstanding these conditions and the relatively simple underly-

ing genetic architecture (Noble and Burns, 2010).

Leveraging convergent biology is critical for translating a list of

genes into biological insights. The goal is to integrate a complex

set of many observations from one (typically ‘‘lower’’) level of

analysis (e.g., risk-associated genetic variants) in order to

generate simpler hypotheses on another (often ‘‘higher’’) level

of analysis (e.g., cellular processes perturbed in NPDs; Figure 1).

Central to this concept is the idea that pleiotropy can be mini-

mized by focusing on points of strong convergence, which are

expected to indicate the biology most relevant to the disorder

in question. For example, a superficial analysis suggests conver-

gence of many of the 65 most strongly associated ASD genes

into three distinct cellular roles: (1) chromatin modification/regu-

lation, (2) synaptic function (De Rubeis et al., 2014), and (3) ubiq-

uitination (unpublished data). Additionally, ASD-associated

genes also show enrichment of protein-protein interactions (De

Rubeis et al., 2014) and protein-DNA regulatory relationships

(Cotney et al., 2015), further suggesting converging mecha-

nisms. Finally, recent developments in systems biology ap-

proaches have identified convergence of ASD genetic findings

along the spatial, temporal, and cellular axes of human brain

development (Willsey and State, 2015). ASD-associated genes

appear to be highly co-expressed during specific developmental

epochs and in specific brain regions and cell types, most notably

in the mid-fetal prefrontal cortex and glutamatergic excitatory
ers and Initiatives
a common pipeline to identify high confidence genes (false discovery rate [FDR]
c encephalopathies (EE), schizophrenia, (SCZ), Tourette disorder (TD), and
s from whole exome sequencing studies only and leveraged TADA to estimate
ate a fair ‘‘exome-wide’’ comparison across disorders and focused on de novo
. NPDs with 5 or more high confidence risk genes are shown (i.e., TD and OCD
dentified for each disorder (total number in parentheses). ASD and ID as well as
Some of these studies excluded probands with co-morbid NPDs. For example,
or diagnosis of autism or pervasive developmental disorder before the onset of
e extent of shared genetic etiology. Similarly, we identified these genes solely
t the common variant level is not reflected here.
nd initiatives. Using the same methods as in (A), we identified risk genes for
corresponding to the unique set of genes from pooling (A) with the set of genes
s (Table S1), which examine developmental disorders collectively. The DDD
hort and therefore the relevance of overlap is unclear. Finally, we derived a list of
gen Interaction (HPI) genes from the HPIDB 2.0 database (Ammari et al., 2016)
h of the other three gene sets (Tables S2 and S3) suggesting strong synergy
hogen Map Initiative (HPMI), and similar efforts in CHD.
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neurons, particularly deep layer (layer 5/6) projection neurons

(Willsey and State, 2015). While estimates of the number of

genes involved in ASD risk range from hundreds to thousands

(Sanders et al., 2015), these findings suggest that a large number

of risk genes in ASDwill converge on a smaller number of biolog-

ical pathways, cell types, and modes of network dysfunction. If

true, understanding the underlying pathobiology and developing

effective therapeutics may be broadly feasible in ASD. In a

similar vein, despite different pathological hallmarks, converging

biology has emerged across various neurodegenerative dis-

eases associated with distinct genetic variants. These common

mechanisms include protein quality control and degradation

mechanisms, RNA metabolism and stress granules, and innate

immunity (Wang et al., 2018). However, identification of more

specific pathobiological pathways is crucial for translational

biology in these disorders.

The resolving power of these types of broad, annotation-

focused approaches is often constrained or led astray by the

assumption that proteins have mostly one function. Many phys-

iological proteins and, perhaps even more so, pathogenic pro-

teins, have a diversity of actions and interactions, most of which

still remain unknown. Therefore, we propose that it is imperative

to generate hypothesis-free data (based on hypothesis-free ge-

netic findings) characterizing the physical and genetic interac-

tions among these genes in cell types present in the human brain

across both spatial/anatomical and temporal/developmental di-

mensions and, furthermore, to integrate findings across such

contexts.

A Convergent Systems Biological Approach to
Understanding Neuropsychiatric Disorders
The National Institute of Mental Health (NIMH) defines conver-

gent neuroscience as an approach that aims to establish direc-

tional bridges across different levels of analysis (e.g., genetic,

molecular, cellular, circuit) in order to fully explain emergent phe-

nomena, and ultimately, pathobiology (see NIH FOA at https://

grants.nih.gov/grants/guide/pa-files/PAR-17-176.html for a

detailed explanation). In this framework, we view a bottom-up

convergent approach as generating the foundational functional

data and insights necessary to begin to bridge the knowledge

gap between the genome and the clinic (Figures 1 and 2). In

the initial phase, we suggest that one key area of focus should

be risk genes for early-onset NPDs since rare, large effect, cod-

ing variants offer substantive advantages over the investigation

of CNVs, non-coding variants, or common variants in proteomic

and other functional studies. This focus avoids the challenges of

interpreting multiple genes with unclear individual contributions,

intergenic loci, and variants of small effect, respectively. ASD is

an attractive starting point as there is an extensive list of ASD

genes with rare coding variants (Figure 3A). To concretize what

further steps might look like, we describe critical goals below,

separated into two major categories: (1) data and insights and

(2) higher-level integrations. Furthermore, we discuss potential

synergies with initiatives focused on other disease areas.

Data and Insights
Interactomes vary among cell type, developmental stage, and

physiological context. However, it is difficult to choose the con-
512 Cell 174, July 26, 2018
texts in which to characterize risk gene function in a given NPD.

One attractive approach would therefore be to generate low res-

olution data across a diversity of cell types of the human brain

(e.g., iPSC-derived neural progenitor cells, cortical excitatory

neurons, inhibitory interneurons, microglia, and astrocytes),

and then focus on the points (cell types) of strongest conver-

gence (e.g., the cell type with the most significant enrichment

for protein-protein interactions between risk genes). We hypoth-

esize these will be the most pathologically relevant cell type(s).

Other data can also inform the choice of cell type(s). Co-expres-

sion networks and specific expression analyses are powerful

tools for identifying the context(s) most relevant to a given NPD

(Willsey and State, 2015). Gene expression profiling of bulk

tissue and single cells from the developing human brain, model

organisms, primary human neuronal cell culture, or iPSC-derived

cells will therefore be crucial data for continuing to identify

important biological contexts enriched for NPD genes.

Mapping Physical Interaction Networks

A convergent bottom-up approach aims to group risk genes

into pathways and subsequently understand the relationships

between these pathways (Figure 2). Systematically mapping

high-resolution physical interaction networks of risk genes—by

characterizing the protein-protein interactions (PPI) and, where

relevant, protein-DNA interactions (PDI)—will elucidate the pair-

wise relationships between these genes and other human genes.

Understanding these specific relationships, and how they are

grouped into higher-order cellular systems, will help place these

genes into their specific functional roles. This level of under-

standingwill likely generate testable hypotheses for downstream

experiments as we can predict the effects of mutations in a

particular gene, or the outcome of pharmaceutical manipulation

of a specific pathway. Given the confounds discussed earlier,

generating these data in a hypothesis-free manner, searching

for the strongest points of convergence, and minimizing the

extent to which this process is based on existing knowledge/as-

sumptions is critical. Importantly, recent gene discovery studies

combine data from both LGD and missense mutations, setting

the stage for studies of allelic series that include both complete

and partial loss of function mutations.

Indeed, missense variants could be particularly useful for

characterizing shifts in interactions or structural changes in key

protein complexes, which may be more illuminating than com-

plete null alleles. Ion channels that harbor both LGDs and

missense mutations are particularly attractive in this regard, as

missense effects on channel function can be quantified and

compared to LGD variants (e.g., SCN2A) (Ben-Shalom et al.,

2017). Knowledge of physical interactions would have an addi-

tional benefit in improving gene discovery as integration of

network-level data identifies additional risk genes based on their

relationship to currently known risk genes (Cotney et al., 2015;

Liu et al., 2014).

Protein-Protein Interaction Networks

While there are extensive PPI databases (e.g., Intomics [Li et al.,

2017], Bioplex [Huttlin et al., 2015], and STRING [Szklarczyk

et al., 2015]), data from human-brain-specific cells are limited.

One approach to generate these data is to leverage affinity

tag-purification mass spectrometry (AP-MS) to systematically

map PPIs in iPSC-derived cells, followed by validation of a

https://grants.nih.gov/grants/guide/pa-files/PAR-17-176.html
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subset of these interactions in animal model systems and in hu-

man primary tissue and cells. We have successfully used this

system in other contexts (Davis et al., 2015; Jäger et al., 2011;

Krogan et al., 2006; Mirrashidi et al., 2015). These newly gener-

ated data could be integrated with existing data to further

improve discovery and to understand similarities and differences

between interactions in cells of the brain versus other tissues.

Protein-DNA Interaction Networks

ASD risk genes tend to function in chromatin modification and

transcriptional regulation. For example, a protein encoded by

strongly associated ASD gene, CHD8, appears to regulate other

ASD risk genes during a critical mid-fetal developmental window

in the prefrontal cortex (Cotney et al., 2015). Chromatin immuno-

precipitation sequencing (ChIP-seq)-based characterization of

NPD-associated regulatory networks through systematic evalu-

ation of implicated chromatin modifiers, transcriptional regula-

tors, and other DNA-binding proteins in iPSC-derived cell types

would therefore identify potential downstream pathways likely

relevant to pathobiology. Integrating these data with PPI data

would be synergistic, as we hypothesize that many of the

DNA-binding proteins will associate into chromatin-modifying

or transcriptional complexes (De Rubeis et al., 2014). We also

anticipate that PDIs may functionally relate to PPIs (e.g., regula-

tory complexes may control the expression of genes encoding

interacting synaptic proteins).

Mapping Genetic and Chemogenetic Interaction

Networks

AP-MS captures physical interactions between proteins but mis-

ses functional relationships between network nodes that do not

interact physically (Beltrao et al., 2010) (Figure 2). For example,

enzymes in a metabolic pathway may have strong functional

interaction without interacting physically. Furthermore, PPIs do

not provide the directionality necessary to define a pathway.

While PDIs do have directionality and provide important informa-

tion about regulatory relationships between genes, they may be

too broad to point directly to specific biological pathways.

Genetic and chemogenetic interaction mapping are therefore

natural complements to physical interaction datasets as they

facilitate interpretation of gene-gene relationships in terms of

epistasis and pathway hierarchy.

Genetic Interactions

Large-scale systematic genetic interaction (GI) maps were pio-

neered in model organisms such as Saccharomyces cerevisiae

(yeast) (Beltrao et al., 2010), and have recently been imple-

mented in mammalian cells (Bassik et al., 2013; Roguev et al.,

2013), including approaches using CRISPR and CRISPRi

(Boettcher et al., 2018; Du et al., 2017; Kampmann et al., 2013;

Shen et al., 2017). Beyond detecting GIs between individual

gene pairs, large-scale GI maps make it possible to group genes

into clusters based on the similarity of their genetic interaction

patterns with other genes. One can also identify additional inter-

actions that were not evident in the primary physical interaction

data. For example, GI maps have defined functionally distinct

protein complexes that contain a large number of common pro-

tein subunits that had eluded definition by PPI methods (Bassik

et al., 2013; Roguev et al., 2013). Thus, GI and PPI maps could

provide complementary insights and can be used to recursively

refine functional models.
Chemogenetic Interactions

Combining a small molecule as a perturbagen with other small

molecules or with genetic perturbation is a powerful way to

gain functional insight behind physical and genetic interaction

maps and may suggest novel therapeutic strategies. The effects

of small molecules on these systems can be considered in two

main ways. First, systematic perturbation with selected small

molecules and then organization of molecules by the signatures

they induce (e.g., changes in gene expression, shifts in physical

interactions). Leveraging system-wide shifts in co-expression or

physical interactions may help to characterize previously un-

known off-target effects and diverse mechanisms of action,

which could otherwise confound these experiments.

Second, small molecules, targeting a specific protein, can be

used as agents that are finely tunable in dosage, timing, and

combination—as compared to genetic manipulations (Zhao

et al., 2011). Again, careful consideration of the full spectrum

of effects would be critical to reduce confounds.

Higher-Level Integrations
Hierarchical Modular Analysis

Many approaches to organize network data are based on clus-

tering or community detection (Brohée and van Helden, 2006;

Vandin et al., 2012), yielding lists of gene clusters or ‘‘modules’’

that roughly correspond to protein complexes or pathways.

However, cells are not merely modular (e.g., a list of functions

or complexes) but also hierarchical and multi-scale, in which

these subsystems nest within larger units that nest within path-

ways and organelles. Previously, it has been shown that molec-

ular networks embed such hierarchical structure, such that

analysis of these networks can capture, to large degree, the

hierarchy of biological processes and components encoded by

the cell (Dutkowski et al., 2013). Indeed, hierarchies of cell com-

ponents formulated entirely from systematic physical and ge-

netic interaction networks parallel the hierarchies of cell biology

built through manual curation approaches such as the Gene

Ontology (GO) project (Ashburner et al., 2000), but are potentially

less biased and can identify previously undocumented subsys-

tems. Additionally, leveraging the GO as a standard reference

that can be aligned to these novel hierarchies has proven to

be a powerful approach to extracting meaning (Dutkowski

et al., 2013).

Hence, by organizing a collection of systematic network data

with these tools, constructing a complete hierarchy of neurode-

velopmental processes and relating them to phenotype may be

quite plausible (Yu et al., 2016). Clearly, a comprehensive hierar-

chical model of neurodevelopment would represent a major

resource with potential to impact a broad cross-section of

research. Moreover, such work would provide important proof-

of-concept for automated construction of gene ontologies for a

wide range of cellular processes.

Cellular Phenotypes

Hierarchical modular analysis, or other similar approaches,

would help group genes (proteins) based on their functional rela-

tionships to each other. This would in turn generate testable hy-

potheses and anchor investigations of higher-order phenotypes

(Yu et al., 2016); for example, high-resolution cellular phenotyp-

ing coupled to machine learning (Finkbeiner et al., 2015)
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to investigate cell-level consequences ofmutations in a function-

ally related group of genes. Sophisticated computational ap-

proaches such as deep learning offer exciting and relatively un-

biased ways to discover novel phenotypes and reference cell

maps will be critical reference datasets (e.g., Cell Atlas) (Horwitz

and Johnson, 2017; Thul et al., 2017). Longitudinal single cell ap-

proaches that can capture the dynamic changes in networks and

the order of events in a cascade would likely be necessary to un-

derstand the temporal dynamics of development of pathobi-

ology. These data would help resolve changes in networks that

are primary pathogenic events from those that might be adaptive

or maladaptive responses (Finkbeiner et al., 2015). These exper-

iments could be conducted in cells derived from isogenic iPSCs

with induced perturbations and from patient-derived iPSCs, as

well as in higher-level model systems such as 3D iPSC culture,

bioengineered tissue models, primary slice tissue culture, and

model organisms. The development of in vitro engineered

models that recapitulate the microenvironmental context of

cell-cell interactions would accelerate these efforts.

Interfacing with Clinical Efforts

Eventually, comparing patient-derived and typically developing

tissue will be necessary to fully understand pathobiology and

may also yield strategies to stratify patients into phenotypic sub-

groups. Appropriate clinical data will be key in order to relate

molecular modules to higher level phenotypes (Figure 1). There-

fore, it will be crucial to work with clinicians to collect these data

during recruitment and to be able to re-contact patients.

Neural Circuitry and Systems-Level Investigation

Higher-level cell-cell interactions, aswell as systems-level neural

circuitry represent a promising avenue of convergent investiga-

tion, particularly for extending insights gained from a convergent

bottom-up approach (Figure 1). Neuronal circuits exhibit emer-

gent behavior that reflects the collective properties of multiple

cell types, likely distributed across multiple brain regions.

Furthermore, homeostatic mechanisms operating at the circuit

level may alter the properties of one cell type in order to regulate

activity in a distinct population (Davis, 2006; Nelson and Valakh,

2015). As a result, circuits represent logical loci for the manifes-

tation of convergence, in which changes in diverse genes, pro-

tein networks, cell types, or developmental stages may elicit

similar changes in circuit function. Identifying such convergence

requires the development of specific assays of circuit function;

currently, these are being developed at both the microscopic

and mesoscopic scales. At the microscopic scale, rapid ad-

vances in genetically encoded calcium indicators and multielec-

trode recording technology have made it possible to measure

simultaneous activity in many neurons at once (Akerboom

et al., 2013; Jun et al., 2017). This, in turn, makes it possible to

obtain a relatively unbiased screen of many aspects of circuit

function that can be examined to discover conserved circuit

changes (resulting from distinct etiological perturbations), which

elicit common phenotypes (Luongo et al., 2016). At the meso-

scopic scale, translational biomarkers observed in mouse

models and human patients, e.g., synchronized oscillations

within electroencephalographic (EEG) or magnetoencephalo-

graphic (MEG) recordings (Cho et al., 2015; Senkowski and

Gallinat, 2015), could link dysfunction of specific cell types to

behavioral phenotypes (Cho et al., 2015; Sohal, 2012). In vitro
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systems that allow for precise patterning of cell circuits may

also facilitate useful controlled studies of neuronal activity and

communication. Other technologies, such as electrocorticogra-

phy (ECoG), hold similar potential for phenotyping as well

(Cho et al., 2015). Taken together, these emerging methodolo-

gies represent an exciting opportunity to gain further, high-level

insight into the pathobiology of NPDs.

In Vivo Models

Identifying the molecular networks underlying NPD risk genes in

human in vitro models would provide a powerful framework for

understanding cell-intrinsic processes, but may lack non-auton-

omous, circuit-level, and developmental context. The most uti-

lized in vivo model for studying NPDs is mice (Mus musculus)

(Razafsha et al., 2013). However, hypothesis-free characteriza-

tion of many genes in parallel is cost-ineffective in mouse and

other mammalian systems, especially because it is largely un-

clear which cell types, brain regions, or time points to investigate.

Therefore, we propose an iterative investigation of in vitro and

in vivo systems, starting withmore simple and higher-throughput

model organisms (Figure 1). Recently resources have been

developed to integrate data related to human genes and their

variants across most model organisms (Wang et al., 2017).

The fruit fly, Drosophila melanogaster, offers an attractive and

relatively simple in vivomodel to tackle neurologic disease asso-

ciated genes (Sxentürk and Bellen, 2018). High throughput behav-

ioral genetic screens have allowed the isolation of numerous

genes including those that govern diurnal rhythmicity (Sehgal,

2017) and cause epilepsy (Parker et al., 2011). A large-scale

screen for neurodevelopmental and neurodegenerative muta-

tions by Yamamoto et al. (2014), led to the isolation of 165 fly

genes, 30% of which were associated with human disease

genes in the Online Mendelian Inheritance in Man (OMIM) data-

base in 2014. This number has now risen to 55% in 2018

because of sequencing efforts including those of the Center for

Mendelian Genetics (Chong et al., 2015) and the Undiagnosed

Disease Network (Ramoni et al., 2017). In fruit flies, a simple

and powerful strategy consists of introducing an artificial exon

containing a Splice Acceptor-T2A-GAL4-polyA tail in introns of

homologs of human genes using CRISPR. This nearly always

creates strong loss of function mutations because of transcrip-

tional arrest at the polyA tail. Expression of transactivator protein

GAL4 by the endogenous regulatory elements of the tagged

gene can then be used to assess the expression pattern of the

gene with UAS-GFP (Lee et al., 2018) and rescue the mutant

phenotype with UAS-homologous human-cDNA, humanizing

the fly gene. This approach has already proven successful, and

has provided an assessment of patient-derived variants and

identified new human diseases. These and other sophisticated

rescue strategies allow dissection of the basic biological

functions of the human genes and can probe into molecular

mechanisms using secondary screens based on unbiased pro-

tein interactions revealed by IP-MS and metabolomics (Sxentürk
and Bellen, 2018; Wangler et al., 2017).

Zebrafish is an alternative in vivo model organism that has

recently emerged as a powerful system for identifying behavioral

phenotypes downstream of NPD risk gene perturbation. Zebra-

fish exhibit complex social behaviors which can be easily as-

sessed in the laboratory (Stewart et al., 2014). For example,



high-throughput behavioral screening identified night time hy-

peractivity as a phenotypic outcome following loss of the ASD

risk gene cntnap2 (Hoffman et al., 2016). In this study, large-

scale drug screening then identified estrogen receptor agonists

to have a behavioral signature anti-correlated with cntnap2

knockout, with some compounds able to rescue this phenotype.

A similar high-throughput screening approach using scn1a mu-

tations in zebrafish identified clemizole as a potential treatment

for Dravet syndrome, a common epileptic encephalopathy (Bar-

aban et al., 2013). These kinds of large-scale screening efforts

are not possible in mammalian systems, and highlight the prom-

ise of this aquatic species to reveal new behavioral insights and

potential therapeutics. However, their duplicated genome com-

plicates genetic and proteomic analyses.

The frog (Xenopus tropicalis) is a model organism that

boasts all the advantages of zebrafish while being 100+

million years evolutionarily closer to humans and possessing

a diploid genome (Hellsten et al., 2010; Wheeler and Brändli,

2009). Of the top 65 ASD-associated genes, 64 have well-an-

notated orthologs in X. tropicalis, with an average protein

sequence identity to the human gene of 78% (NCBI Homolo-

gene). In comparison, mice have 64 of 65 with 93% identity

and zebrafish have 62 of 65 with 71% identity (calculated

with closest homolog). Importantly, the basic features of

vertebrate brain development are conserved between frogs

and humans. In fact, our understanding of neural induction

comes from experiments in Xenopus, in which Noggin was

identified as the key factor that acts by inhibiting BMP

signaling (Lamb et al., 1993; Zimmerman et al., 1996). Many

current protocols for inducing neural differentiation in human

stem cells in vitro rely on this foundational knowledge.

Furthermore, self-organizing structures, such as the eye,

induced from human stem cells were first demonstrated in

Xenopus (Eiraku et al., 2011; Thomsen et al., 1990). More

recently, findings in Xenopus related to NPDs have proven

translatable to other model systems, such as mice. For

example, loss of FMRP (Fragile X Mental Retardation Protein)

in Xenopus tadpoles leads to defects in neurogenesis that

have also been observed in FMRP null mice (Faulkner et al.,

2015; Guo et al., 2011; Luo et al., 2010).

Another advantage of studying brain development in Xenopus

is an ability to make animals in which only half of the brain is tar-

geted by CRISPR reagents. The other half of the brain serves as

an internal control, and comparison between sides allows for

the identification of subtle phenotypes that may be difficult to

detect in fully mutant animals. These animals can then be

observed longitudinally over the course of brain development

to assay neuroanatomy (e.g., b-tubulin-GFP) (Marsh-Armstrong

et al., 1999), neural activity (e.g., GcAMP6s) (National Xenopus

Resource; http://www.mbl.edu/xenopus/tropicalis-stocks),

progenitor biology (e.g., Pax6-GFP) (Hirsch et al., 2002), and

synapse formation (e.g., PSD95-GFP) in vivo. Furthermore,

like in zebrafish, drug screening is straightforward and easily

scaled (Wheeler and Brändli, 2009). Finally, high-throughput

behavioral analyses have recently been developed for tadpoles,

which show sophisticated and predictable responses to a wide

variety of external cues (Blackiston and Levin, 2012; Rothman

et al., 2016).
While these models allow for high-throughput screening in

a model amenable to genetics, they lack the complex circuitry

of the mouse or human brain and will not capture human-

or mammalian-specific interactions. Therefore, these higher

throughput models could be used to build hypothesis-free, foun-

dational knowledge regarding cell types, brain regions, and time

points that are important for pathobiology. Findings from these

systems could then inform targeted experiments in human

iPSCs, organoids, mouse models, and human brain slice cul-

tures. Reciprocally, hypotheses formed from experiments in

the other systems could be tested quickly in Xenopus or

Drosophila without major investment. Comparing physical and

genetic interaction networks in human cell lines to cell lines

from these model organisms, and relating these comparisons

to in vivo phenotypes in these systems may also be a powerful

approach.

Synergy with Other Initiatives
Excitingly, information flow between the PCMI and other estab-

lishedmapping initiatives has the potential to create exciting and

productive synergies, including the repurposing of therapeutics.

Many of the NPD genes harboring germline mutations are so-

matically mutated and drivers of cancer (38 genes are shared

among 273 NPD genes and 556 Tier 1 Cancer genes, p =

4.01 3 10�13; Figure 3B; Tables S2 and S3). This suggests that

understanding the molecular networks underlying cancer could

also improve our understanding of specific aspects of NPDs,

and vice-versa. With respect to the HPMI, there is mounting in-

terest in a potential link between maternal immune activation

during pregnancy and the development of NPDs, including

ASD and schizophrenia (Blomström et al., 2016; Jiang et al.,

2016; Scola and Duong, 2017), although there is conflicting evi-

dence (Zerbo et al., 2017). This putative link is interesting given

that 43 NPD genes have also been implicated as central to vi-

rus-related host-pathogen interactions (p = 1.16 3 10�15, n =

43/273 NPD genes, 601 total HPI genes; Figure 3B; Table S2).

Thus, data and insights gained from the HPMI could be critical

to understanding this potential phenomenon.

Work by the Pediatric Cardiac Genetics Consortium (PCGC)

has demonstrated striking overlap of genes harboring de novo

damaging mutations in congenital heart disease (CHD) and in

NPDs, and that CHD and NPDs show a high prevalence of co-

occurrence (Homsy et al., 2015; Jin et al., 2017; Zaidi et al.,

2013). For example, 19 genes have de novo LGD mutations in

both CHD and NPDs and 48 have damaging mutations (LGD +

probably damaging missense variants [Adzhubei et al., 2013]) in

both. These events are highly unlikely by chance (p < 10�6). Simi-

larly, we observe here that established NPD risk genes overlap

significantly with CHD risk genes (p = 1.67 3 10�9, n = 14/273

NPD genes, 92 total CHD genes; Tables S2 and S3). Genes that

are mutated in both CHD and NPDs tend to be highly expressed

in bothdevelopingheart andbrain (Homsyet al., 2015).Moreover,

CHD probands with de novo LGD mutations in the overlapping

gene set (Figure 3B) are markedly more likely to be diagnosed

with NPD, and those with LGD mutations in chromatin modifiers

are particularly prone to develop NPDs (87%) (Jin et al., 2017).

Importantly, because childrenwithCHDcome to clinical attention

in the newborn period, if not in utero, those with mutations that
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impart high likelihood of subsequently developing ASD or other

NPDs can be identified at birth, affording the opportunity for

bothobservational studiesof probandsbefore a clinical presenta-

tion of NPD, as well as efforts to mitigate neurodevelopmental

consequences via early intervention. Xenopus has also proven

to be a powerful model system for studying overlapping NPD

genes in the context of CHD (Duncan and Khokha, 2016), again

suggesting synergistic overlap in understanding the pathobiology

of both classes of disorders. Notably, CHD genes also overlap

with genes from the other initiatives (Figure 3B).

Conclusions and Outlook
The goal of the PCMI is to uncover new molecular and functional

interaction data and pathway-level insights as they relate to

NPD risk genes, which would have a variety of important applica-

tions. First, these data would likely facilitate a higher-order under-

standing of NPDs at the molecular, cellular, and circuit

level. Second, they would likely reveal new targets for future ther-

apeutics development. There are numerous examples of

pathway-level insights translating to biological mechanisms and

therapies, including in cancer research (Kroganet al., 2015), infec-

tious diseases (Shah et al., 2015), and hypertension (Lifton et al.,

2001). Identification of in vitro biomarkers through improved

pathway-level understandingwould greatly help therapeutics dis-

covery, and can enable high-throughput phenotypic screening

with large-scale small molecule libraries. However, the identifica-

tion of clinically reliable and relevant biomarkers will likely require

additional preclinical work in model systems. Third, these data

would likely feed back into gene discovery by identifying physical

and genetic interaction partners not yet revealed by genomic

methods. This has been explored in ASD through approaches

layering genetic association data with gene co-expression and

regulatory networks (Cotney et al., 2015; Ideker et al., 2011; Liu

et al., 2014). Fourth, findings could be utilized in conjunction with

phenotypic data to explore disorder subtypes (Yu et al., 2016).

The approach described here is not envisioned to be the only

avenue of investigation of NPDs, as there are limitations. First,

there are concerns about context; it is difficult to determine the

appropriate biological context from the outset (e.g., cell types

and time points). Furthermore, in vitro monoculture methods

do not fully reflect the in vivo cellular environment in which

NPDs develop, particularly given the complex nature of neural

tissues. Parallel in vivo investigation in more simple model sys-

tems (e.g.,Drosophila, Xenopus, etc) followed by testing specific

hypotheses in more complex in vivo (e.g., mice) and in vitro

systems (e.g., organoids, bioengineered tissue models) will

help address concerns about predictive validity of models.

Finally, analyses will ultimately have to include a comparison of

cases and controls, but the most critical (causal) differences be-

tween these groups likely emerge during very early, preclinical

stages (including those in utero), making access to truly informa-

tive human samples a huge challenge that remains to be ad-

dressed. As mentioned earlier, children with CHD come to clin-

ical attention very early on, and therefore, those with mutations

that substantially increase the risk for ASD or other NPDs can

be identified at birth; perhaps, this may partially mitigate this lim-

itation by facilitating ascertainment and study of probands

before a clinical presentation of NPD. Alternatively, if iPSC-
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derived models turn out to have good predictive validity, they

may help overcome this obstacle. Nevertheless, we frame this

approach as an important foundational tool for beginning to un-

ravel NPDs, the results of which will have to be interpreted in

context and confirmed in the clinic. A second set of concerns re-

lates to scope. Investigations at the pathway level may not

readily translate to higher levels of complexity, such as circuit

level phenotypes or behavior. This would be especially true if

strong convergence is not observed at the molecular level. Link-

ing bottom-up approaches to other efforts to study biological

convergence at higher levels—for example, ‘‘top-down’’ and

‘‘middle-out’’ in vitro and in vivo electrophysiology and sys-

tems-neuroscience—will therefore be critical.

Despite these challenges, the field is at a potential tipping

point in the endeavor to understand the pathobiology of NPDs.

Hypothesis-free, large-scale, genome-wide analyses are identi-

fying risk genes and loci at an astounding rate. We have the abil-

ity to generate diverse cell types of the human brain and tomodel

certain periods of human brain development in vitro and in vivo,

CRISPR-based genetics approaches are revolutionizing the

modeling of patient-derived mutations, technologies for gener-

ating high-resolution molecular data are available, and our ability

to extract complex insights from these data with machine

learning approaches are advancing rapidly. As a result, we

now have an unprecedented opportunity to bridge the gap be-

tween gene discovery and translational biology.
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