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ABSTRACT: Enrichment of ligands versus property-matched decoys is widely used to test and optimize docking library screens.
However, the unconstrained optimization of enrichment alone can mislead, leading to false confidence in prospective performance.
This can arise by over-optimizing for enrichment against property-matched decoys, without considering the full spectrum of
molecules to be found in a true large library screen. Adding decoys representing charge extrema helps mitigate over-optimizing for
electrostatic interactions. Adding decoys that represent the overall characteristics of the library to be docked allows one to sample
molecules not represented by ligands and property-matched decoys but that one will encounter in a prospective screen. An
optimized version of the DUD-E set (DUDE-Z), as well as Extrema and sets representing broad features of the library (Goldilocks),
is developed here. We also explore the variability that one can encounter in enrichment calculations and how that can temper one’s
confidence in small enrichment differences. The new tools and new decoy sets are freely available at http://tldr.docking.org and
http://dudez.docking.org.

■ INTRODUCTION

Large library docking screens seek to discover new chemotypes
that are active on a target, based on molecular fit. Calculation
speed has been crucial since the field’s inception,1−9 and to
ensure it, several biophysical terms are either approximated or
ignored entirely. While this led to programs that can screen
libraries now approaching10 or exceeding11 a billion molecules,
discovering novel ligands for multiple targets,10,12−24 the
emphasis on throughput has forced compromises that make
predicting absolute binding energies by docking, or even
compound rank-ordering, implausible.25 While molecular
docking screens are thus pragmatic, and while docking remains
among the methods most subject to experimental testing in
computational biophysics, it is also among the biophysical
methods that have most surrendered “ground truth”.
Accordingly, to evaluate new docking methods or to evaluate

how well docking might perform prospectively on a new target,
benchmarking studies are often performed. For a new docking
method, these benchmarks evaluate the key outcomes expected
of a library screen: can the method reproduce the binding
orientations of known ligands for a range of targets, and can it

enrich known ligands from among a set of decoys over a range
of disparate targets? For a particular target campaign with an
established method, such benchmarks optimize for ligand pose
fidelity and enrichment. This occurs by varying sampling and
weighting energy termsideally constrained by physical
reasonableness. It has been argued that careful construction
of retrospective benchmarks, indeed by addressing some of the
same problems that we investigate here, can lead to
retrospective performance that predicts prospective suc-
cess.26−28 Our own view is more conservative: given the very
thin slice of top-ranking candidates from which docking
predictions are drawn, it is difficult for small retrospective
benchmarks to predict prospective, experimental success in
docking much larger libraries. Still, without such benchmarks,
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the likelihood of success is reduced, as is our ability to
understand failure. In docking, running detailed benchmarks
for a new method or on a new target fulfills the same role as
controls in experimental biology, which often also lack “ground
truth”, and so must rigorously control all new experiments.
However, just as in experimental biology, well-run controls
simply protect against obvious failure and allow one to
disentangle prospective failure when it frequently occurs; they
do not predict prospective success when one is trying to
discover something genuinely new.
Among the most widely used benchmarks in library docking

is the enrichment of annotated ligands versus property-
matched “decoy” molecules.29−31 A decoy molecule is one
that is expected not to bind to a protein of interest; enrichment
measures docking’s ability to highly rank (enrich) the
annotated ligands vs such decoys. The idea of using decoys
in benchmarks follows from analogous use in protein structure
prediction32−34 and initially drew on random molecules.35−37

As is true for folding decoys, it was found that it was important
that decoy molecules physically resemble the known ligands;
otherwise, the docking program might be optimized to simply
recognize gross physical differences, such a molecular weight,
hydrophobicity, or charge.38 Property-matched decoys match
ligands by physical properties but are otherwise topologically
unrelated and so presumed not to bind. Enrichment of ligands
against property-matched decoys, in sensible geometries, thus
offers some assurance that the docking program recognizes
ligands by their detailed interactions and not just gross physical
differences. Several benchmarking sets of ligands and property-
matched decoys have been introduced,39−46 including the
DUD and DUD-E sets.29,30 The DUD-E benchmark, which
covers 102 proteins, 22,886 ligands, and 1.1 million property-
matched decoys, is widely used to test new methods, while its
method of matching ligands to decoys is often employed to
construct bespoke benchmarks as controls for individual target
campaigns.
Notwithstanding its wide use, several studies have shown

that DUD-E retains important liabilities. These include small
differences in ligand vs decoy property matching, which can be
exploited by virtual screening to falsely increase enrich-
ment,47−49 as can self-similarity among the benchmark
molecules.49 Finally, property-matched decoys do not
represent the full spectrum of molecules that will be
encountered in docking a diverse library, something that has
become increasingly true as these have increased to 109

molecules. For instance, they will not expose one to extreme
physical differences nor will they necessarily represent even the
typical molecular properties of a large library26,50,51;
Here, we investigate optimized and new benchmarks that

contribute to addressing some of these pathologies. An
optimized version of the DUD-E set (DUDE-Z) addresses
unintended biases in the older set that others have
described,47,48 allowing for false enrichment. We also
investigate an extrema benchmarking set (Extrema), which
seeks to address charge imbalances in docking scoring
functions and by nature uses decoys that are property-
unmatched. Finally, we investigate a benchmark that represents
ligands that have average physical features of the larger library
to be docked, following up on weaknesses pointed out by
earlier studies,26,50,51 rather than being property-matched. Akin
to the Grimm fairy tale, we call this library “Goldilocks”
because its molecules are drawn at random from the middle of
ZINC lead-like physical property space and are not too big, not

too small, not too greasy, and not too polar. In our experience,
retrospective calculations against each set help control for
different pathologies in prospective docking campaigns that are
of chief interest in early ligand discovery research.

■ METHODS
DUD-E. Three-dimensional dockable ligand and decoy files

for the 41 DUD-E targets were downloaded from http://
autodude.docking.org. For D4 dopamine and melatonin MT1
receptors, DUD-E decoys were generated from http://dude.
docking.org/generate and built using an in-house ligand
building pipeline.

Binders & Nonbinders. Three-dimensional dockable files
for binders and nonbinders for D4 dopamine and MT1
melatonin receptors were downloaded from ZINC15. This
included 84 binders and 468 nonbinders and 105 binders and
65 nonbinders for D4 and MT1, respectively. Enrichment
calculations were performed for all 16 scoring function
coefficient combinations (see Docking Calculations).

DUDE-Z. An initial motivation for this study was an
imbalance among the charge states between ligands and decoys
in DUD-E, arising from the generation of multiple protonation
states for the molecules. In the DUD-E set, this had arisen
because the DUD-E set was reported in 2D SMILES format
with specific protonation states specified. Because our pipeline
builds all molecules at all protonation states at physiological
pH, the generation of new protonation states of ligands and
decoys disturbs the charge balance originally controlled for in
the DUD-E set. To correct this in the DUDE-Z set, only
prebuilt 3D decoys with specified protonation and charge
states are matched to prebuilt ligands, ensuring that charge is
matched exactly, and this balance is not disrupted. The DUDE-
Z set is provided in both 2D and 3D formats.
As part of the current ligand building pipeline,52

ChemAxon’s CXCALC command is used on the 2D SMILES
of each molecule to generate protonation and tautomer states
at physiologically relevant pH.53 Each protomer is converted to
3D format using CORINA,54 and conformational ensembles of
each protomer are generated using OpenEye’s Omega.55

Atomic charges and desolvation penalties are calculated using
AMSOL7.1.56 Files are formatted into flexibases for docking
with DOCK3.7.
Because several DUD-E systems had large numbers of

ligands and decoys, we reduced the number of ligands for more
rapid docking calculations. Targets with over 100 ligands had
their ligands sorted by molecular weight and were clustered by
an ECFP4 Tanimoto coefficient (Tc) of 0.7. The smallest
ligand in each cluster served as the cluster representative for
property-matched decoys, which had the added advantage of
better matching the properties of the general docking library.
As several of the docking targets have high molecular weight
ligands and because 3D molecules in ZINC15 are biased
toward lead-like properties (as of July 2020, 448 million of the
698 million 3D molecules in ZINC15 are defined by 300 ≤
MW ≤ 350 and −1 ≤ cLogP ≤ 3.5), we found that using the
smallest ligand as the cluster representative had the greatest
success in retrieving sufficient numbers of 3D property-
matched decoys. For targets with less than 100 ligands, all
ligands were retained for generating property-matched decoys.
As in DUD-E, decoys were matched to ligands based on

molecular weight, water−octanol partition coefficient (cLogP),
number of rotatable bonds, number of hydrogen bond donors
and acceptors, and net charge. We generated all protonation
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states for each ligand using ChemAxon’s Jchem53 at
physiological pH and computed molecular properties using
RDKit. Each of these protomers shares the same molecule ID;
an underscore is added along with the number for each
protomer; for instance, a molecule with two protomers would
be designated with ZINCXXXX_0 and ZINCXXXX_1. Each
protomer would be assigned up to 50 property-matched
decoys, resulting in 100 property-matched decoys for this
single molecule. For each protomer, the optimal goal was to
find 50 property-matched decoys, but we also accepted as few
as 20 if the number of decoys in ZINC15 was limited in this
property space. To identify matching decoys, the ZINC15
website was queried for up to 10,000 3D molecules matching
the ligand protomer for the molecular properties listed above.
Once thousands of decoys for a target were retrieved, ECFP4
Tanimoto calculations were performed using in-house
programs (https://github.com/docking-org/ChemInfTools)
between all ligands and all potential decoys for that target.
Any decoy that had greater than 0.35 ECFP4 Tci.e., was too
similar topologicallyto any ligand was discarded. The decoys
were then sorted by molecular weight and clustered by an
ECFP4 Tc of 0.8, with the decoy most dissimilar to any ligand
being retained from each cluster. This ensured that property-
matched decoys would not contain duplicates and ensured
some scaffold exploration among the decoys. The remaining
decoys were sorted by ECFP4 Tanimoto coefficients to all
ligands and were placed such that the ligand with the least
number of decoys assigned would get the decoy in an iterative
procedure. If fewer than 50 decoys could be assigned to all
ligands, then the highest number of decoys that could be
assigned to the ligand protomers was computed. If it was
difficult to find 3D decoys for a target, then an alternative
approach that queries ZINC15 for molecular SMILES was
used. The procedure was largely the same, except that up to
750 potential decoys were retrieved for each ligand protomer
based on molecular weight and cLogP of the decoy SMILES.
Then, an additional step was performed in which ChemAxon’s
JChem was used to generate protonation states for these
decoys’ SMILES followed by calculation of the remaining
molecular properties by RDKit to determine whether they
matched the ligands in property space.
Extrema. To generate extrema sets for all 43 targets, the

molecular weight and cLogP values of the DUD-E ligand set
were calculated using RDKit, and the corresponding
interquartile ranges were calculated. For each charge, we
retrieved a minimum of 1000 “in-stock” or “make-on-demand”
molecules from ZINC15, built at physiological pH of 7.4, in
readily dockable format in this molecular weight and cLogP
property space. Most of these molecules fall within charge
ranges from −2 to +2, but there exist molecules with outlier
charges as well. These dockable molecules were docked to
their protein targets, and enrichment calculations were
performed (see Docking Calculations).
Goldilocks. For generating the Goldilocks decoy set, which

is used for all targets, the same procedure as with Extrema was
used. However, instead of matching the decoys to an input
ligand set, “in-stock” 3D-built molecules for each charge
ranging from −2 to +2 within the property space (300 Da ≤
MW ≤ 350 Da, 2 ≤ cLogP ≤ 3) were retrieved from
ZINC15.52 For each charge, 3D-built molecules were retained
until they reached half of the total number of 3D molecules
with that charge and within that molecular weight and cLogP
property space (on December 10, 2019). These dockable

molecules were docked to their protein targets, and enrich-
ment calculations were performed (see Docking Calculations).
Of the 69,909 decoys in DUDE-Z, 5357 also appear within the
1.1 million Goldilocks set.

Docking Calculations. DOCK3.7.257 was used for ligand
docking. The orientations of candidate ligands are calculated in
the site by matching ligand atoms to precalculated hot spots on
the protein surface, using internal distance correspondence to
ensure fidelity and to calculate a rotation-translation matrix
that moves the library molecule from its initial frame-of-
reference to that of the binding site.57−59 Once fit in the site,
potential ligands are scored for fit based on electrostatics and
van der Waals complementarity, corrected for ligand desolva-
tion. The protein is protonated by REDUCE60 and assigned
AMBER61 united atom charges. QNIFFT62 is used to calculate
Poisson−Boltzmann-based electrostatic potentials, CHEM-
GRID1 is used for AMBER van der Waals potentials, and
SOLVMAP63 is used for calculating ligand desolvation
energies. With these grids calculated, docking scores may be
rapidly calculated by looking up the potentials for each ligand
atom and multiplying them by the appropriate ligand property
(e.g., electrostatic interactions are the partial atomic charge
times the electrostatic potential at that position in space, as
stored on the grid). The value of the electrostatic potential
depends on where the dielectric boundary is drawn between a
low-dielectric protein (ε = 2) and a high-dielectric solvent (ε =
80). This can be extended out by the addition of low-dielectric
spheres in the site. To represent ligand flexibility, DOCK3.7
orients flexibases64precomputed 3D conformer ensembles
into the binding site. After molecules are scored for
complementarity with the protein, simplex minimization is
performed on the top scoring pose of each molecule.
Targets chosen for docking were based on completeness of

structure, no missing active site loops, diversity of protein types
(enzymes, proteases, GPCRs, and kinases, among others), and
diversity of ligand charge. Of the 43 targets, 41 targets were
taken directly from the DUD-E set, while MT1 and DRD4
were taken from recent docking campaigns. Ligands for each of
the targets were taken from the DUD-E set. As described
previously,30 ligands annotated to targets with activities (EC50,
IC50, Ki, Kd, and log variants thereof) of 1 μM or better were
extracted from ChEMBL09.65 These are labeled as “active-
s_nM_combined.ism” and can be found on the DUD-E
webpage (www.dude.docking.org/targets/). Ligands that have
affinities worse than 1 μM are labeled as “actives_marginal_-
combined.ism” on the DUD-E webpage. Except for AmpC,
where we have specialist knowledge, we did not remove
molecules that may be acting as colloidal aggregators nor those
with PAINS functionality, hoping that the 1 μM filter will
eliminate most of these. Aggregators and molecules with
PAINS alerts were also not removed from the DUD-E set;
other investigators may wish to filter more stringently by these
criteria and may do so by building on the scripts in http://tldr.
docking.org.
The PDB structures assigned to 40 DUD-E targets were

retrieved and prepared in an automated fashion by in-house
scripts based on the DOCK Blaster pipeline66 for generating
docking grids (blastermaster.py in the DOCK3.7 distribution).
The docking preparations for AmpC,10,67,68 DRD410,14 (PDB:
5WIU), and MT169 (PDB: 6ME3) adopted the parameters
that had been used in published prospective docking screens
against these targets, which led to experimental testing of tens
to many hundreds of molecules. This allows investigators to
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use not only calculated decoys but also experimentally
measured false positives from these prospective docking
screens. Thin sphere layers were used for AmpC, DRD4, and
MT1 to extend the dielectric boundary from the solute surface
for Poisson−Boltzmann calculation63 radii of 2.0, 1.0, and 1.9
Å, respectively. For all other systems, the default DOCK
Blaster preparation was used in which the full binding site was
filled with low-dielectric spheres of radius 1.9 Å for Poisson−
Boltzmann calculations, thereby modeling the full binding site
as a low-dielectric solute. The magnitudes of the partial charges
of five AmpC residues and two MT1 residues were increased
without changing the net residue charges.68 For all DUD-E
targets, their DUD-E assigned PDB ligand was used for
generating up to 45 matching spheres, to which molecules are
matched during docking. For DRD4 and MT1, matching
spheres were generated based on the atomic coordinates of
nemonapride and 2-phenylmelatonin, respectively. Ligand

conformations were generated by OpenEye’s Omega.55

Ligands were only scored if the number of ligand heavy
atoms contained within the ligand ranged from 4 to 100. For
each ligand hierarchy (each rigid fragment contained within
the ligand), the maximum number of matches generated was
set to 5000. For AmpC and DRD4, the large-scale docking
setup was used, in which the target number of ligand hierarchy
matches was set to 1000, and up to 500 simplex
minimization70 steps were performed for each top scoring
pose of each docked molecule, starting with initial translations
of 0.2 Å and initial rotations of 5°. For MT1, the target number
of ligand hierarchy matches was set to 5000, and up to 500
simplex minimization steps were performed for each top
scoring pose of each docked molecule. All other DUD-E
systems did not use simplex minimization. To judge perform-
ance, the adjusted log AUC was used. The adjusted log AUC
subtracts the log AUC of the random curve (14.462%) to

Figure 1. (a) For each electrostatic coefficient (0.3, 0.5, 0.7, and 1.0), the average adjusted log AUC value and standard error, which are calculated
over the four ligand desolvation coefficients (0.3, 0.5, 0.7, and 1.0), are plotted. Individual adjusted LogAUC plots for each electrostatic and ligand
desolvation coefficient combination for PUR2 (b) and CXCR4 (c) are shown. Performance for PUR2 diminishes as the ligand desolvation
coefficient increases, while performance for CXCR4 improves as the ligand desolvation coefficient increases.
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ensure that random enrichment is 0% at any percentage of the
database. For the DUD-E benchmarking calculations, the
DUD-E ligands for each target are used as the ligand set for
these calculations. For all plots for DUDE-Z, Extrema, and
Goldilocks, the reduced ligand set after clustering by an
ECFP4 Tanimoto coefficient of 0.7 is used for these
calculations.
To prepare different scoring function coefficient combina-

tions, the “electrostatic_scale” and “ligand_desolv_scale”
parameters of the INDOCK files for each target were modified
to be 0.3, 0.5, 0.7, or 1.0, generating 16 different combinations
of DOCK scoring weights. The van der Waals scoring function
coefficient was maintained at 1.0 for all docking calculations.
All other parameters in the INDOCK file, docking grids, and
matching spheres were kept identical.
Bootstrapping. To add error bars to our LogAUC

calculations and to compare different setups statistically, we
use bootstrapping. For each bootstrap replicate (50 total for
each system), ligands and decoys were chosen at random with
replacement (i.e., a ligand or decoy could be chosen multiple
times) until the same sample size as the original set was
reached. Each new hit list was then sorted by the original
docking energy, and a new adjusted log AUC is calculated. Z-
tests were performed to test the significance of the difference
between the means of two bootstrapped distributions. With the
p-value smaller than 0.05, the null hypothesis of equal mean
and distribution is rejected. The Z-test is chosen since the
number of bootstrap replicates is larger than 30, and the
bootstrapped distribution rapidly converges to the normal
distribution with mild finite-variance assumptions.71

■ RESULTS

DOCK Scoring Function Optimization Using Prop-
erty-Matched Decoys. We were confronted with the
liabilities of relying on property-matched decoys in an
investigation of different weighting terms in the DOCK3.7
scoring function.57,63 We initially tried to use adjusted
LogAUC performance (see below) to guide the optimization
of the scoring function by varying the coefficients of the
electrostatics and ligand desolvation contributions to the total
docking score. We scanned across electrostatics and ligand
desolvation weighting for 41 DUD-E targets and for the MT1
melatonin receptor (MT1) and D4 dopamine receptor
(DRD4), which have the advantage of hundreds of
experimentally tested docking predictions10,69 (Figure 1). To
measure performance, we used a log-weighted area under the
curve approach, subtracting from this enrichment expected at
random (adjusted Log AUC,63 Figure 1 and Table 1). This
approach equally weights enrichment in the top 0.1 to 1% of
the library with that within the top 1 to 10% and the top 10%
to 100% of the library, thus up-weighting early performance.
Sampling sixteen combinations of weights (four electrostatics,

four ligand desolvation with constant van der Waals) revealed
that performance correlated with the electrostatics and ligand
desolvation terms (Figure 1a, Table 1, but see Sensitivity
Analysis below for the significance of these differences). In
most of the DUD-E targets, increasing the electrostatic
coefficient increased enrichment of ligands among high-
ranking molecules. This included systems such as GAR
transformylase (PUR2), which had its best performance with
weights of 1.0 for electrostatics and 0.3 for ligand desolvation
(Figure 1b). These same coefficients, however, negatively
impacted other systems, such as C-X-C chemokine receptor
type 4 (CXCR4), where the same weights that were optimal
for AmpC led to worse performance. Instead, CXCR4 had its
best enrichment of ligands among high-ranking molecules with
weights of 0.5 on the electrostatics and of 1.0 on the ligand
desolvation terms (Figure 1c).
Closer inspection revealed that the enrichment differences

and the sensitivity to scoring coefficients were often explained
by different formal charge distributions between ligands and
decoys. For instance, for AmpC, larger weighting of electro-
static interactions improved enrichment of high-ranking
ligands because AmpC’s ligands are all anionic, whereas 35%
of AmpC’s DUD-E decoys are neutral (Figure 2a). Thus, as
the weight on the ligand desolvation term, which scales with
net charge, decreases, AmpC’s anionic ligands are penalized
less (Figure 2c). When unconstrained, as with an electrostatics
weighting of 1.0 and ligand desolvation weighting of 0.5, the
“optimized” scoring function, i.e., the coefficients that
maximize enrichment, prioritizes charge over other molecular
properties versus the unweighted, standard scoring function.
Similarly, most of the PUR2 ligands are dianions, while their
decoys are mainly monoanionic or neutral (Figure 2b), and
docking with reduced ligand desolvation coefficients favors the
ligands over the decoys (Figure 2d). Even if all our molecular
properties, besides charge, are well-matched in the DUD-E
benchmarking sets, altering the scoring function weights of
electrostatics and ligand desolvation allows DOCK to simply
recognize gross physical differences between ligands and
decoys, rather than detailed molecular interactions, reflecting
an imbalance in the DUD-E ligand and decoy properties.

New Property-Matched Decoy Method. The original
DUD-E benchmarking set30 was built to correct the charge
imbalance in the original DUD set29 by including net charge
during property matching. However, during molecular building
of 3D dockable molecules, the charge populations change
based on which protomers are predicted to exist at
physiological pH, producing charge imbalances that were not
present in the SMILES representation. For example,
calculating the formal charges of the AmpC ligand and
decoy SMILES contained within the DUD-E benchmarking set
suggests that 60 and 38% of ligands are neutral and
monoanionic, respectively, while 43 and 56% of decoys are

Table 1. Adj. LogAUC for DOCK3.7 Scoring Coefficients over 43 Targetsa

0.3ES 0.5ES 0.7ES 1.0ES

0.3LD 16.3 (11, 7, 25) 13.89 (8, 10, 25) 11.85 (6, 8, 29) 9.95 (6, 8, 29)
0.5LD 19. 3 (17, 9, 17) 17.99 (12, 11, 20) 15.87 (8, 14, 21) 12.71 (4, 14, 25)
0.7LD 20.17 (17, 14, 12) 19.88 (17, 19, 7) 18.72 (9, 22, 12) 16.05 (4, 17, 22)
1.0LD 19.95 (15, 15, 13) 20.31 (17, 18, 8) 20.1 (16, 21, 6) 19.19

aValues outside the parentheses are the average adjusted log AUC values, while those within the parentheses refer to the number of targets that
improved by 1 adjusted log AUC value, stayed within ±1 log AUC, and diminished by 1 adjusted log AUC value vs the standard scoring function
(1.0ES+1.0vdW+1.0LD) (see Table S1 for full results).
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Figure 2. Proportion of charged ligands and decoys in the DUD-E benchmarking sets coupled with altered electrostatic and ligand desolvation
weights affects the DOCK energies and thus LogAUC values. Percentage of ligands or decoys in the DUD-E set with a given charge for AmpC β-
lactamase (AmpC, a) and GAR transformylase (PUR2, b). Comparison of DOCK energy and molecule charge for AmpC β-lactamase (AmpC, c)
and GAR transformylase (PUR2, d) for the electrostatic coefficient of 1.0 and the four ligand desolvation weights (0.3, 0.5, 0.7, and 1.0). Central
dotted lines of DOCK energies represent the medians, upper dotted lines represent the third quartiles, and lower dotted lines represent the first
quartiles for both scoring functions. The lowest points represent the minimum DOCK energies, and the highest values represent the maximum
DOCK energies. The AmpC ligands in DUD-E are predominantly anionic (a), and while this is also true for the decoys, the latter harbors a higher
ratio of neutral molecules. Increasing the ligand desolvation coefficient ranks neutral molecules higher (as sorted by total DOCK energy), favoring
decoys, and enrichment decreases (c). Conversely, increasing the electrostatic coefficient favors the anionic ligands, increasing the enrichment. The
large majority of PUR2 ligands is di-anionic, while the decoys are monoanionic (b), providing an advantage to the ligands at lower ligand
desolvation coefficients (as sorted by total DOCK energy) (d), as they can form more favorable electrostatic interactions with the protein without a
large ligand desolvation cost.
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di- and monoanionic, respectively, compared with the actual
charge representation in the dockable set (Figure 2a).
To address this, we created a new decoy pipeline that better

charge-matched ligands to decoys (freely available at http://
tldr.docking.org), such that ligand and decoy protomers are
only considered in their dockable, 3D representation. In
summary, up to 50 decoys are generated for each ligand
accounting for the charge, molecular weight, calculated LogP,
number of rotatable bonds, and number of hydrogen bond
acceptors and donors while ensuring that these decoys are
structurally dissimilar to each other and to the ligands to which
they are matched (Table 2 and Table S3). By default and

always for proteins with more than 100 ligands, the ligands are
first clustered by an ECFP4 Tc of 0.7 to reduce the dominance
of narrow congeneric series. The ligand with the smallest
molecular weight from each cluster is chosen for property
matching. These changes improve the DUD-E design, without
changing its underlying logic.
Improved Property-Matched Decoys Reduce False

Enrichment. With these changes in hand, we compared the
“optimized” scoring function with a 0.5 weight on ligand
desolvation to the standard, unweighted scoring function to
determine whether the improved enrichments stood up to
better charge matching between ligands and decoys.
Competition with the better charge-matched decoys reduced
the enrichment differences between the standard and the

“optimized” 0.5 ligand desolvation scoring functions from -1.11
with the original DUD-E set to −0.34, supporting the
hypothesis that more closely property-matched decoys would
be less susceptible to imbalances in electrostatics and ligand
desolvation energies (Figure 3 and see Sensitivity Analysis
below for the significance of such differences). For instance,
AmpC, whose enrichment was better with the optimized
scoring function by 6.34 log adjusted AUC, with the new
property-matched decoy background now much favors the
standard scoring function, attaining an enrichment of 20.92, 12
adjusted log AUC over the “optimized” scoring function’s 8.93.
Similarly, the DUD-E enrichment difference for PUR2 was
9.15 log adjusted AUC, but the difference becomes 0.35 in the
new decoy set. Similar behavior where complete charge
matching reduces preference for the optimized scoring
function is seen in multiple systems including fatty acid
binding protein 4 (FABP4), protein-tyrosine phosphatase 1
(PTN1), tryptase beta-1 (TRYB1), and trypsin I (TRY1). The
opposite also occurs, where preference for the standard scoring
function is diminished in the presence of better charge-
matched decoys such as in rho-associated protein kinase 1
(ROCK1), C-X-C chemokine receptor type 4 (CXCR4), and
epidermal growth factor receptor (EGFR). Overall, the average
adjusted log AUC values for the 43 targets dropped from 19.2
and 20.3 for the standard and “optimized” scoring functions,
respectively, with the original DUD-E benchmarking sets, to
14.9 and 15.3 with the new, better-matched decoy sets (Table
3). This enrichment drop reflects the better choice of decoy
molecules in the new benchmarks, making the challenge
harder, appropriately, for the docking program.
To ensure that these differences were not due to the reduced

ligand set used in DUDE-Z vs the larger ligand sets in DUD-E,
we generated charge-matched decoys for the 43 targets using
the full ligand set from DUD-E (Table S6). Preparing the
original DUD-E set using the protocols on the DUD-E site, the
“optimized” scoring function performs better than the standard

Table 2. Ligand and Decoy Properties for 43 Protein
Targets

DUD-E
DUDE
-Z Extrema Goldilocks

# unique ligands 8267 2312
# unique decoys 477,924 69,904 732,309 1,145,472
# unique decoy scaffolds 162,286 33,292 143,423 317,316

Figure 3. Adjusted LogAUC differences between the standard, unweighted scoring function, and the optimized scoring function (1.0ES+1.0vdW
+0.5LD), comparing the original DUD-E decoys (blue bars) and decoys prepared with the new DUDE-Z pipeline (orange bars), in which decoys
are better charge-matched. Apparent advantages for the weighted scoring function dissipate on better charge matching. Average adjusted log AUC
differences of −1.11 (DUD-E) and −0.34 (DUDE-Z).
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one by 3.4 units of adjusted logAUC. When this full DUD-E
set is now optimized for charge matching, using the DUDE-Z
procedures, the difference between the adjusted logAUC drops
to 0.82 units between the two scoring functions. With both the
reduced ligand set and the charge matching, the difference
between the two scoring functions falls to 0.33 adjusted
LogAUC. This supports the idea that the difference between
the two scoring functions with DUD-E largely reflects a charge
mismatch between ligands and decoys within that set. We note
that for AmpC β-lactamase, the dopamine D4 and the
melatonin receptors, hand-optimized docking parameters,
used in past prospective campaigns against these targets,10,69

were employed. We therefore compared performance with the
DUD-E and DUDE-Z benchmarks with and without optimized
parameters in these three systems. The DUDE-Z benchmark
was typically more stringent, though the opposite was true for
the melatonin receptor, on whose neutral-dominated ligands
and decoys the optimization in DUDE-Z will have less impact
(Table S7). It is also interesting that retrospective enrichment
did not always improve with the hand-optimized parameters
used in the actual prospective campaigns. For instance, those
optimized parameters reduced enrichment for the DUDE-Z
and Goldilocks sets for the dopamine D4 receptor versus
unoptimized parameters. However, enrichment vs the extrema
set was improved, reflecting better charge matching with the
optimized parameters, as did geometric fidelity to competent
ligand poses. These observations emphasize that multiple
criteria may be considered in optimizing docking parameters,
not simply enrichment against a decoy set (we do not discount
the possibility of improving benchmarks to make this more
automatic; we would note that the prospective campaigns
against the D4 dopamine and MT1 receptors and against
AmpC revealed novel, potent ligands with high hit rates10,6).
Beyond Property-Matched Decoys: Charge Extrema.

Given the sensitivity to even small differences in charge
matching between ligands and decoys, we thought it
worthwhile to investigate how sensitive the docking was not
only to property matching but to extremes intentionally
outside the property range of the ligands. We reasoned that
docking parameters might be unintentionally optimized to
weight particular energetic terms at the expense of others. Such
blind spots might only be illuminated when comparing the
performance of physically extreme molecules.
Based on our experience with the impact of electrostatic and

desolvation weighting above, we focused on ligands represent-
ing charge extremes, probing for overweighted electrostatic
interactions or underweighted desolvation penalties in our
scoring function. These charge-extrema sets were populated

with decoys that have similar physical properties (molecular
weight, cLogP) to the ligands queried but include all charges
from −2 to +2, taken from “in-stock” and “make-on-demand”
libraries in ZINC15.52 If many molecules bearing a net charge
of −2 score better than AmpC’s monoanions, for instance,
then this would indicate a bias in the scoring that would have
been concealed by the charge-matched decoys. We generated
sets of property-matched charge-extreme decoys for 43 targets
(Table S4). These charge outlier decoys (≤ −2 and ≥ +2)
comprised on average 37% (272K of 732K molecules) of
benchmarks, ranging from 15% (tryptase beta-1, TRYB1) to
57% (neuraminidase, NRAM). For a well-balanced scoring
function, which properly captures molecular interactions,
including charge extrema should improve ligand enrichment
since decoys bearing unreasonable charges should be readily
recognized, which is indeed what we see, though performance
improves only slightly (Figure 4, Table 3, and see Sensitivity

Table 3. Average Adusted logAUC Values for Different
Decoy Sets

Extrema Goldilocks

DUD-E
DUDE
-Z

DUD
-E

ligands

DUDE
-Z

ligands
DUD-E
ligands

DUDE
-Z

ligands

optimized
(1.0ES
+1.0vdW
+0.5LD)

20.31 15.26 26.05 16.24 42.18 28.68

standard
(1.0ES
+1.0vdW
+1.0LD)

19.2 14.92 26.16 16.02 41.71 28.13

difference −1.11 −0.34 0.11 −0.22 −0.47 −0.55

Figure 4. (a) Adjusted LogAUC differences between the standard
scoring function and the weighted scoring function using the new
DUDE-Z decoy pipeline and the charge extrema decoys. (b,c).
Comparing DOCK energy and molecule charge of the standard and
optimized scoring functions using DUDE-Z ligands and using charge
extrema decoys for (b) protein-tyrosine phosphatase 1 (PTN1) and
(c) macrophage colony stimulating factor receptor (CSF1R). Central
dotted lines of DOCK energies represent the medians, upper dotted
lines represent the third quartiles, and lower dotted lines represent the
first quartiles. The lowest points represent the minimum DOCK
energies, and the highest values represent the maximum DOCK
energies for both scoring functions. As ligand desolvation is down-
weighted in the optimized scoring function, more extreme charges
score better, which is advantageous for targets that have extreme
charged ligands like PUR2 and PTN1. However, this becomes
problematic and decreases enrichment for systems whose ligands are
less extreme like EGFR and CSF1R.
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Analysis below for the significance of such differences), with
systems with charged ligands being affected significantly. For
example, GAR transformylase (PUR2, Figure 4b) recognizes
tri- and dianionic ligands. When screened against a large
extrema set with down-weighted desolvation, cations begin to
dominate, behavior that the standard scoring function is at

least partially able to combat (Figure 4b). Similar behavior is
seen with protein-tyrosine phosphatase 1b (PTN1), which
predominantly binds mono- and dianions in the standard
scoring function but begins to prioritize tri- and tetra-anions
when the optimized scoring function is utilized. As with GAR
transformylase, the increased desolvation cost in the standard

Figure 5. (a) Enrichment differences between the standard scoring function and optimized scoring function comparing the new DUDE-Z
benchmarks, charge extrema decoys, and the Goldilocks benchmarks, with a focus on the enrichment changes in specific targets (b). Comparison of
net charge of ligands and benchmark decoys for AmpC β-lactamase (AmpC, c), GAR transformylase (PUR2, d), trypsin I (TRY1, e), peroxisome
proliferator-activated receptor alpha (PPARA, f), urokinase-type plasminogen activator (UROK, g), and epidermal growth factor receptor (EGFR,
h). For systems whose ligands have more extreme charges, there is a typically small overlap in ligand charges and decoy charges, providing an
advantage to the extreme charged ligands with the optimized scoring function. However, in systems where the ligand charges overlap more
significantly with the decoy charges, the standard scoring function begins to perform better as there are no extreme charged ligands to exploit the
lower desolvation cost and rank more favorably.
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scoring function actually diminishes performance relative to
the “optimized” scoring function as it penalizes both extreme-
charged ligands and decoys. On the other hand, epidermal
growth factor receptor (EGFR) and macrophage colony
stimulating factor (CSF1R, Figure 4c), which perform better
with the standard scoring function over the optimized scoring
function with extrema, both recognize neutral ligands. When
these two targets are screened with charge extrema, the
standard scoring function is more equipped to penalize
inappropriate charges over the optimized scoring function,
which in the presence of charge extrema is flooded with anions
and cations. Each of these cases can be explained by the
underweighting of the ligand desolvation penalty in a scoring
function optimized against the DUD-E set that both had a
discrepancy between ligand and decoy charges and were not
challenged with charged extrema, as we show here.
If charge extrema can reveal cryptic pathologies in docking

scoring, then so too can testing against molecules that are
intentionally unmatched from the physical properties of the
ligands but instead reflect the molecules of the overall library
itself. Since each receptor will have its own ligand preferences,
certainly with the biases from the medicinal chemistry
literature, for any given receptor, the average library molecule
may well-represent a physical property outside those of the
receptor’s ligands, exposing the docking screen to new,
previously unsampled physical properties. Thus, we inves-
tigated control calculations with a set of 1.1 million ZINC
molecules. These comprised over 300,000 Bemis−Murcko
scaffolds72 representing the middle of the range of physical
parameters of the library: not too big, not too small, not too
polar, and not too greasy (Goldilocks, Table S5). Whereas this
benchmark was meant to represent the middle range of
properties of a much larger library to be docked prospectively,
we also compared it to the physical properties of a large high-
throughput screening deck, the 400,000 molecule Molecular
Libraries Small Molecule Repository (MLSMR), and to hits
from screening and other techniques that have been advanced
to candidacy.73 Gratifyingly, the molecules in Goldilocks
overlapped both of these sets in key physical properties
including MWT, cLogP, the number of rotatable bonds, and
the number of hydrogen bond acceptors and donors (Figure
S6). Docking the Goldilocks benchmark against the 43 targets
resulted in log adjusted AUC values of 28.13 and 28.68 for the
standard and “optimized” scoring functions, respectively
(Table 3). These are higher than the enrichments with the
property-matched sets, as expected owing to its non-property-
matched nature; the differences between the two scoring
functions against the Goldilocks set are small (see Sensitivity
Analysis below).
As an aside, the Goldilocks set also allowed us to return to

one of the earliest motivations for property-matched bench-
marks,38 the idea that they would prevent docking scoring
functions from cheating by optimizing against a particular
physical property, such as molecular weight. Thus, property-
matched sets are meant to be and widely thought to be harder
for docking than random sets of molecules. The 1.1 million
molecule size of the Goldilocks set allows us to return to this
point quantifiably, comparing performance against this bench-
mark vs DUDE-Z across 43 receptor systems. A random set of
Goldilocks decoys was chosen for a fixed set of ligands
(common to both benchmarks), with a ratio of 50:1 decoys to
ligands; this was repeated 100 times with different random
Goldilocks decoys, and a distribution of LogAUC values was

calculated (Figure S5). In 39 of 43 systems, the LogAUC of
the Goldilocks scores was compelling and certainly statistically
larger than the DUDE-Z LogAUC values, with z-scores for the
average difference in LogAUC typically exceeding 100. This
supports the longstanding idea that property-matched decoys
provide harder tests for docking than random collections of
ligands.
Even against a background of high enrichment, there are

targets for which performance varies between the two scoring
functions. Here, we focus on illustrative targets where the
differences are substantial and significant (see Sensitivity
Analysis below). In AmpC β-lactamase, tests against the
DUDE-Z set suggest that the standard, unweighted scoring
function led to better enrichments than the putatively
optimized one where ligand desolvation was down-weighted
by 0.5 (Figure 3), in contrast to the DUD-E benchmark test
that had led to this new weighting. Against the Goldilocks
benchmark, however, the situation reverts, with the optimized
scoring function performing better than the standard scoring
function, with an enrichment difference over 11 in adjusted log
AUC (Figure 5). This difference is only partly captured by the
extrema set, where the difference is only slightly larger than 2
adjusted log AUC. Similarly, GAR transformylase (PUR2) sees
the relative enrichment of the optimized scoring function rise
by almost 10 units of adjusted log AUC versus the standard
scoring function with the Goldilocks set vs DUDE-Z, while
with trypsin I (TRY1), ligands favor the optimized scoring
function using the Goldilocks benchmark by almost 4 adjusted
log AUC units versus the less than 1 unit difference using the
DUDE-Z set. A few targets, such as FK506-binding protein 1A
(FKB1A) and polo-like kinase 1 (PLK1), see the opposite
effectthe optimized scoring function performs noticeably
worse with the Goldilocks benchmark versus DUDE-Z. These
differences are explained by differences in the properties of the
decoys in the different benchmarks. In DUDE-Z, the decoy
physical properties are tightly calibrated to those of the ligands.
Conversely, Goldilocks represents the physical properties of
the library to be docked. For targets recognizing ligands with
physical properties much different from “lead-like”74 mole-
cules, which dominate the Goldilocks benchmark and the
library it represents, such as AmpC, GAR transformylase
(PUR2), and trypsin I (TRY1), the DUDE-Z set will be a
more stringent test (Figure 5b). However, scoring term
weights that optimize performance against it will not always
translate to a lead-like benchmark like Goldilocks. For these
systems, the key differences are in the distribution of charge
states of the ligands and the decoys: in DUDE-Z, these are
well-matched, while in Goldilocks and the ultra-large library
that it represents, mono-, di-, and trianions, as well as dications,
are far less common than among the known inhibitors of these
targets (Figure 5c−e), providing opportunities for these
ligands to exploit the optimized scoring function with its
down-weighted ligand desolvation term and score well. For
systems that bind molecules within lead-like space, such as
peroxisome proliferator-activated receptor alpha (PPARA),
urokinase-type plasminogen activator (UROK), and epidermal
growth factor receptor (EGFR), the enrichment differences
between the standard and optimized scoring functions
diminish and even begin to favor the standard scoring function
(Figure 5b,f−h), as outlier charges are unable to exploit
liabilities within the optimized scoring function.
Up until now, we have seen results shift as we change the

benchmark from DUD-E to the optimized DUDE-Z to
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Extrema to Goldilocks. A natural reaction might be to despair
of benchmarking entirely. Our own view is that each of these
benchmarks is useful (we suggest the optimizations in DUDE-
Z over DUD-E), and together can inure developers and users
from false conclusions around the scoring function and
docking parameter optimization. The different lessons that
each benchmark teaches reflect weaknesses of enrichment as a
metric; it nevertheless remains a crucial criterion for docking
performance. These are points to which we will return.
Sensitivity Analysis & Statistical Significance. The area

under the curve (AUC) and its variants are widely used as a
single value measure of docking performance.57,63,75−80 In
comparing an innovation with the current best practice, it is
common to see improvements in enrichment across a
benchmarking set. It is important to understand when such
improvements are significant beyond the variation one might
see with small changes to docking parameters. To assess
confidence intervals on enrichment plots, we turned to an
empirical bootstrapping approach. In this method, we calculate
enrichments multiple times for any given benchmark, each
time picking a random subset of the ligands and decoys in the
set, retaining the same sample size as the original set. For many
of the DUDE-Z targets, this is readily done, as only a subset of
the possible ligands is typically represented, and many more
property-matched decoys are typically available from ZINC.
With the new benchmark, whose ligands closely resemble the
canonical ones and whose decoys reflect the same property
matching, a new enrichment is calculated.
Repeated for 50 random subsets of ligands and decoys for

each target, this approach allows one to calculate confidence
intervals of enrichment (adjusted log AUC). We did so for the

same 43 targets, recording the variance of the enrichments.
Based on these bootstrapping calculations, we find that the
average 95 and 75% confidence interval over the 43 systems is
about 9.4 and 5.8 adjusted log AUC units, respectively.
Naturally, individual systems varied in their confidence levels:
from a relatively tight distribution for androgen receptor
(ANDR, 95% CI of 3.0) to a much wider distribution for fatty
acid binding protein-4 (FABP4, 95% CI of 15.6) (Figure S1).
Bootstrapping can also be used to compare the performance of
two docking methods or two scoring functions. The Z-test and
corresponding p-values are used here since the number of
bootstrap replicates is over 30, and the bootstrapped
distribution follows the normal distribution.
Figure 6 shows the bootstrapped distribution comparison

between the standard and "optimized" scoring functions with
DUD-E, DUDE-Z, Extrema, and Goldilocks as decoy sets on
41 DUD-E targets, as well as the melatonin MT1 receptor and
the dopamine D4 receptor where we have not only
experimentally measured docking true but also docking false
positives (Figure S2). Here, for the combined sets, the change
in the mean adjusted log AUC between the standard and
optimized scoring functions is 0.49, 0.36, −0.05, and 0.23 for
the DUD-E, DUDE-Z, Extrema, and Goldilocks backgrounds,
respectively (Figure 6a). For the aggregate, only the DUD-E
background difference is significant with a p-value less than
0.05, likely reflecting its flawed charge matching between
ligands and decoys, while all other decoy backgrounds are not.
Innovations that we might have otherwise considered
successful are often found to be statistically indistinguishable
or to be significant against one background but not on another.
Screening poly-ADP-ribose polymerase 1 (PARP1) with DUD-

Figure 6. Applying bootstrapping to the different decoy backgrounds demonstrates that while performance may vary significantly for particular
systems between scoring functions, when enrichments enrichments are combined for all decoy sets over all 43 systems, the difference between the
standard and optimized scoring functions become insignificant. Average bootstrapping statistics on the enrichments for DUD-E, DUDE-Z,
Extrema, Goldilocks, and all decoy sets (Combined) for all 43 systems (a). Individual bootstrapping statistics (50 for each) on the enrichments
(adjusted log AUC values) for DUD-E, DUDE-Z, Extrema, and Goldilocks decoy backgrounds for poly-ADP-ribose polymerase I (PARP1, b),
adenosine 2A receptor (AA2AR, c), and coagulation factor VII (FA7, d). From the 50 bootstrapped adjusted log AUC values generated, central
dotted lines represent the medians, upper dotted lines represent the third quartiles, and lower dotted lines represent the first quartiles. The lowest
points represent the minimum adjusted log AUC values, and the highest points represent the maximum adjusted log AUC values generated from
bootstrapping. See Figure S3 for difference distributions and Figure S4 for bootstrapping plots for all 43 systems.
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E, DUDE-Z, and Goldilocks decoy sets shows significant
improvement with the optimized scoring function over the
standard scoring function, whereas performance is significantly
worse with Extrema (Figure 6b). In the adenosine 2A receptor
(AA2AR, Figure 6c), ligands in the presence of DUD-E and
DUDE-Z decoy sets significantly favor the optimized scoring
function but flip to favoring the standard scoring function in
the presence of Extrema and Goldilocks sets, versus in
coagulation factor VII (FA7, Figure 6d), ligands always
significantly favor the optimized scoring function regardless
of the decoy background (see Figure S3 for difference
distributions and Figure S4 for bootstrapping plots of all 43
systems). However, we note that only when screened with the
DUD-E decoys are the enrichment differences in these scoring
functions significantly different (Figure 6a), showing for all
other decoy sets insignificant differences. When all decoy sets
are combined, the bootstrapping enrichment differences
remain insignificant.

■ DISCUSSION
Four themes emerge from this work. First, for all their
strengths, property-matched decoys alone can mislead in
evaluating docking performance. Scoring functions can exploit
physical property differences between ligands and decoys even
in relatively well-balanced sets, as we see by comparing the
original DUD-E and the refined DUDE-Z sets. Decoys that are
intentionally non-property-matched, such as the Extrema set
that explores ligands with high molecular charges and the
Goldilocks set, whose decoys can be far different from the
known ligands but which represent the properties of the ultra-
large database to be docked, reveal liabilities that are hidden by
the property-matched sets. Second, enrichment, which is
perhaps the key criterion for library docking assessment,
remains a weak metric, ungrounded in physical theory or
observables. Third, our understanding of this metric can be
strengthened with confidence intervals, which can be readily
estimated. These confidence margins are often surprisingly
large, and apparently different enrichments are often statisti-
cally indistinguishable. Finally, we make the new tools
developed here, including generation of better property-
matched decoys (DUDE-Z), charge Extrema, Goldilocks, and
bootstrapping adjusted log AUC ranges, available and free to
use for the community.
Property-matched decoys remain crucial for docking

evaluation,29,30,38 reducing the ability of scoring functions to
exploit gross physical property differences between ligands and
the random molecules that had initially been used in the
field.35 However, property matching has its own liabilities,
revealed by other backgrounds. For instance, property
matching decoys to the GAR transformylase, AmpC β-
lactamase, or trypsin I ligands will result in decoys that have
charge ranges tightly distributed around −2, −1, and +1 to +2
formal charges, respectively. A scoring function that over-
weights electrostatic interaction energies or underweights
desolvation energies may not be revealed by such property-
matched decoys. This is what we observed with what appeared
to be an “optimized” function that down-weighted ligand
desolvation, improving average enrichment over 43 systems.
This apparent improvement was eliminated not only by better
charge matching in the optimized DUDE-Z set, but its basis in
overweighted electrostatic interactions was illuminated by a
charge Extrema set (Figure 4). Similarly, benchmarks that are
well-matched around ligands with unusual physical proper-

tiesin this study, highly charged ligandswill not reveal
liabilities that a background representing the properties of the
overall library can illuminate. This is what we observe for the
Goldilocks benchmark (Figure 5).
Enrichment of ligands over property-matched de-

coys30,75,76,81−85 is widely used for parameter optimization
and scoring function development.47,50,51,63,86−93 Because
enrichment is ungrounded in physical theory, it is sensitive
both to changes in the decoy background,49 which are usually
only reasonable guesses, and to the ligands, which represent
experimental observables, flawed though these too can be. In
principle, development of decoy sets and new sampling and
scoring functions would be matched with carefully controlled
wet experiments to test them. While there are several
model87,94−97 and biological systems10,26 that support doing
so and that allow for comparisons among docking programs,
purely computational controls will continue to play a key role
in benchmarking docking performance (as an aside, the advent
of ultra-large docking libraries and the experimental testing of
large numbers of docking hits that flow from them10,69 will
reveal experimental decoys that will complement what have
been, until now, only presumed decoy sets). As such, we do
not wish to undercut enrichment as a metric of dockingweak
as it is, it remains crucial to progress in the field. What this
study teaches is that our confidence in enrichment can be
much strengthened by using multiple decoy backgrounds.
Correspondingly, the significance of enrichment differences
with different docking parameterization and with different
scoring functions should be controlled for. One way to do so is
via the bootstrapping method that we outline here (Figure 6),
which can insulate one from false confidence in differences that
fall within the variation expected from small changes in the
ligands and decoys used (scripts to implement this are available
at http://dudez.docking.org).
Confronted with ever more decoy benchmarks and the time

it takes to run a full set of controls, it is natural to wonder if
there is no end to the cottage industry of new benchmarks.
One can imagine spending too much time on these sanity
checks and too little on the actual prediction of new chemical
matter with prospective docking. Nevertheless, the time and
expense of sourcing and physically testing new chemical matter
and of eliminating experimental artifacts52,98,99 still far exceed
the cost of running these computational controls. Property-
matched benchmarks are rarely composed of more than a few
thousand molecules for a given target, and even the Goldilocks
set comprises less than 2 million molecules, less than 1% the
size of the ultra-large libraries now being prosecuted.10,11,69 To
make these controls accessible to the community, we provide
the optimized DUDE-Z benchmarks at http://dudez.docking.
org. We also provide a web service that allows investigators to
create bespoke Extrema and Goldilocks sets and enables
bootstrapping tests for statistical significancefreely available
at http://tldr.docking.org.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00598.

(Figure S1) Example bootstrapping results, (Figure S2)
bootstrapping on binders and nonbinders for DRD4 and
MT1, (Figure S3) bootstrapping logAUC differences
using different decoy backgrounds, (Figure S4) boot-
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strapping statistics for all 43 targets, (Figure S5)
comparison of logAUC between random Goldilocks
decoys and DUDE-Z decoys, (Figure S6) comparison of
molecular properties between Goldilocks and screening
libraries (PDF)
(Methods S1) Code implemented for calculating the
adjusted logAUC (PDF)
(Table S1) logAUC values for all scoring function
coefficients (XLSX)
(Table S2) logAUC values for standard and optimized
scoring functions for DUD-E, DUDE-Z, Extrema, and
Goldilocks (XLSX)
(Table S3) Properties of the DUDE-Z set (XLSX)
(Table S4) Properties of Extrema decoys (XLSX)
(Table S5) Properties of Goldilocks decoys (XLSX)
(Table S6) Comparison of logAUC values for all 43
targets using original DUD-E, DUDE-Z, and new
charge-matched DUD-E with the full ligand set
(XLSX)
(Table S7) Comparison of unoptimized versus opti-
mized docking setups for AmpC, DRD4, and MT1 for
DUD-E, DUD-E, Extrema, and Goldilocks (XLSX)
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(73) Keserü, G. M.; Makara, G. M. The influence of lead discovery
strategies on the properties of drug candidates. Nat. Rev. Drug. Discov.
2009, 8, 203−212.
(74) Oprea, T. I.; Davis, A. M.; Teague, S. J.; Leeson, P. D. Is there a
difference between leads and drugs? A historical perspective. J. Chem.
Inf. Comput. Sci. 2001, 41, 1308−1315.
(75) Neves, M. A. C.; Totrov, M.; Abagyan, R. Docking and scoring
with ICM: the benchmarking results and strategies for improvement.
J. Comput.-Aided Mol. Des. 2012, 26, 675−686.
(76) Repasky, M. P.; Murphy, R. B.; Banks, J. L.; Greenwood, J. R.;
Tubert-Brohman, I.; Bhat, S.; Friesner, R. A. Docking performance of
the glide program as evaluated on the Astex and DUD datasets: a
complete set of glide SP results and selected results for a new scoring
function integrating WaterMap and glide. J. Comput.-Aided Mol. Des.
2012, 26, 787−799.
(77) Perryman, A. L.; Santiago, D. N.; Forli, S.; Santos-Martins, D.;
Olson, A. J. Virtual screening with AutoDock Vina and the common
pharmacophore engine of a low diversity library of fragments and hits
against the three allosteric sites of HIV integrase: participation in the
SAMPL4 protein-ligand binding challenge. J. Comput.-Aided Mol. Des.
2014, 28, 429−441.
(78) Laẗti, S.; Niinivehmas, S.; Pentikaïnen, O. T. Rocker: Open
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Eidam, O.; Gibold, L.; Cimermancǐc,̌ P.; Bonnet, R.; Shoichet, B. K.;
Taunton, J. Covalent docking of large libraries for the discovery of
chemical probes. Nat. Chem. Biol. 2014, 10, 1066−1072.
(96) Fischer, M.; Coleman, R. G.; Fraser, J. S.; Shoichet, B. K.
Incorporation of protein flexibility and conformational energy
penalties in docking screens to improve ligand discovery. Nat.
Chem. 2014, 6, 575−583.
(97) Merski, M.; Fischer, M.; Balius, T. E.; Eidam, O.; Shoichet, B.
K. Homologous ligands accommodated by discrete conformations of
a buried cavity. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5039−5044.
(98) Shoichet, B. K. Screening in a spirit haunted world. Drug
Discovery Today 2006, 11, 607−615.
(99) Baell, J. B.; Holloway, G. A. New substructure filters for
removal of pan assay interference compounds (PAINS) from
screening libraries and for their exclusion in bioassays. J. Med.
Chem. 2010, 53, 2719−2740.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00598
J. Chem. Inf. Model. 2021, 61, 699−714

714

https://dx.doi.org/10.1021/acs.jcim.7b00309
https://dx.doi.org/10.1021/acs.jcim.7b00309
https://dx.doi.org/10.1021/acs.jcim.7b00309
https://dx.doi.org/10.1016/S0022-2836(02)00777-5
https://dx.doi.org/10.1016/S0022-2836(02)00777-5
https://dx.doi.org/10.1073/pnas.1703287114
https://dx.doi.org/10.1073/pnas.1703287114
https://dx.doi.org/10.1021/acs.jmedchem.6b00131
https://dx.doi.org/10.1021/acs.jmedchem.6b00131
https://dx.doi.org/10.1021/acs.jmedchem.6b00131
https://dx.doi.org/10.1007/s10822-007-9167-2
https://dx.doi.org/10.1007/s10822-007-9167-2
https://dx.doi.org/10.1007/s10822-007-9167-2
https://dx.doi.org/10.1021/ci700130j
https://dx.doi.org/10.1021/ci700130j
https://dx.doi.org/10.1021/ci700130j
https://dx.doi.org/10.3389/fphar.2020.00069
https://dx.doi.org/10.3389/fphar.2020.00069
https://dx.doi.org/10.3389/fphar.2020.00069
https://dx.doi.org/10.1021/jp5053612
https://dx.doi.org/10.1021/jp5053612
https://dx.doi.org/10.1021/ci400025f
https://dx.doi.org/10.1021/ci400025f
https://dx.doi.org/10.1021/ci400025f
https://dx.doi.org/10.1073/pnas.0813029106
https://dx.doi.org/10.1073/pnas.0813029106
https://dx.doi.org/10.1038/nchembio.1666
https://dx.doi.org/10.1038/nchembio.1666
https://dx.doi.org/10.1038/nchem.1954
https://dx.doi.org/10.1038/nchem.1954
https://dx.doi.org/10.1073/pnas.1500806112
https://dx.doi.org/10.1073/pnas.1500806112
https://dx.doi.org/10.1016/j.drudis.2006.05.014
https://dx.doi.org/10.1021/jm901137j
https://dx.doi.org/10.1021/jm901137j
https://dx.doi.org/10.1021/jm901137j
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00598?ref=pdf

