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Abstract  

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of 

much current interest.  In recent structures, ligands bind in stacks in the tau fibrils to reflect the 

rotational and translational symmetry of the fibril itself; in these structures the ligands make few 

interactions with the protein but interact extensively with each other. To exploit this symmetry 

and stacking, we developed SymDOCK, a method to dock molecules that follow the protein’s 

symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to 

generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a 

clash between the original molecule and its image. Absent a clash, we retain that pose and add 

the ligand-ligand van der Waals energy to the ligand’s docking score (here using DOCK3.8). We 

can check these geometries and energies using an implementation of ANI, a neural network-

based quantum-mechanical evaluation of the ligand stacking energies. In retrospective 

calculations, symmetry docking can reproduce the poses of three tau PET tracers whose 

structures have been determined.  More convincingly, in a prospective study SymDOCK 

predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau 

before that structure was determined; the docked pose was used to determine how MK-6240 fit 

the cryo-EM density.  In proof-of-concept studies, SymDOCK enriched known ligands over 

property-matched decoys in retrospective screens without sacrificing docking speed, and can 

address large library screens that seek new symmetrical stackers.  Future applications of this 

approach will be considered. 
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Introduction 

An open problem in ligand discovery is understanding and exploiting the ability of high-

affinity ligands to bind to protein amyloids. Tau (tubulin associated unit), an intrinsically 

disordered protein that can wrap around microtubules, is one such target for diagnostic tools.1–

3 The accumulation of tau fibrils into toxic neurofibrillary tangles (NFTs) is characteristic of 

Alzheimer’s disease (AD), chronic traumatic encephalopathy (CTE), and other 

neurodegenerative tauopathies.4–10 In cryogenic electron microscopy (cryo-EM) studies, tau 

adopts different polymorphs characteristic of different diseases: the paired helical filament 

(PHF) and the straight filament (SF) for AD and Type I or Type II for CTE.11–17 Recently, cryo-EM 

structures of AD tau and CTE tau with ligands bound have been determined. A striking feature 

of these structures is that the ligands bind in stacks to the tau filaments to reflect the rotational 

and translational symmetry of the fibril. Epigallocatechin gallate (EGCG), a tau disaggregator 

found in green tea, binds at the inter-protofilament cleft of AD PHF tau with a stoichiometry of 

one ligand molecule per protein monomer.18 The positron emission tomography (PET) 

radiotracers GTP-1 and MK-6240 bind within the “C” shape of each protofilament with the 

same stoichiometry, as does flortaucipir (Tauvid) to CTE Type I tau.19–22 

 

In each of these examples, the ligands within the stacks make substantial van der Waals 

and π-π interactions. Intriguingly, for the PET tracers, these ligand-ligand interactions seem 

more dominant than their direct contacts with the fibrils. For example, GTP-1 forms only a 

single hydrogen bond with lysine 353 on AD PHF tau.19 Flortaucipir’s pyridine nitrogen in its 

benzo-pyrrolo-pyridine moiety makes a hydrogen bond to aspartate 358 in CTE Type I tau; 
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however, apart from this, the structure primarily extends into the solvent.21 EGCG establishes 

more hydrophilic contacts with the inter-protofilament cleft of AD PHF tau, including hydrogen 

bonds to asparagine 327, glutamate 338, and lysine 340, and polar contact with histidine 329. 

Yet, its interactions mainly involve other ligands in the stack and the surrounding solvent.18 

Despite these minimal fibril contacts, GTP-1 exhibits an 11 nM affinity to tau, while flortaucipir 

binds to brain-derived tau in the low nM to high pM concentration range.23–30 

 

To use this new mode of binding to find other ligands that might bind to different tau 

polymorphs and to other protein fibrils, we developed the symmetric extension to DOCK3.831–

33, “SymDOCK.” This method uses the same pose sampling and scoring as in DOCK3.8 but it only 

retains those poses that can form a symmetrical stack in the protein. We then evaluate the 

ligand-ligand van der Waals energy as a crude measure of favorable self-interaction and add 

that to the DOCK score. Given the imposed symmetry, we assume that the interactions with the 

protein are copied from ligand monomer to monomer. We found that in both retrospective 

and, more convincingly, in prospective prediction, SymDOCK succeeded in recapitulating and in 

predicting the poses of different tau ligands. In a test-of-concept screen of 22 million molecules, 

SymDOCK was not much slower than base DOCK3.8. This suggests that the extra cost of the 

new symmetry operations and of calculating inter-ligand van der Waals energies is 

compensated by the lower sampling imposed by the symmetry constraints. To further test 

SymDOCK’s generated geometries, we computed their energies using ANI, a neural network 

force field trained on density functional theory (DFT) energy data.34,35 We found that their ANI 
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energies and exact geometries differed only slightly from ANI-optimized stacks. We consider 

further generalizations of this approach.  

 

 

Methods 

Symmetric Pose Sampling The SymDOCK extension uses the same ligand building and 

initial pose generation as base DOCK3.8, allowing a user to dock the built section of the ZINC22 

database without any modifications.31,36 To keep SymDOCK from decreasing the speed of 

docking each molecule, we do not generate or attempt to dock a stack of molecules. Rather, we 

generate poses (conformations and orientations) for each ligand as always in DOCK, but only 

keep those that can self-stack.31,37,38 Because of the symmetry of the system, we only need to 

evaluate the ligand-protein interaction (checks for clashes and energetic favorability) for a 

single site; the ligand-protein interactions at all other sites will be identical. 

 

Once we generate a potential pose, we apply the symmetry operation of the fibril and 

check the ligand-ligand interactions (Fig. 1a-b). The symmetry operation of the fibril is the 4-

dimensional affine transformation matrix that acts on a vector in 3 dimensions as the 

application of a rotation followed by a translation. For the tau fibril, this transformation would 

be a 4.7 Å translation down the long axis of the fibril along with a ~-1° rotation in the plane 

perpendicular to that axis.11,18 We describe a procedure for generating this matrix in general in 

the discussion of Supplemental Fig. 1. Once we have a rotated/translated pose of the molecule, 

we check for a van der Waals clash with the initial pose, defined as any atom from the initial 
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pose being within 2 Å of any atom in the transformed pose. We choose this conservative 

definition of what constitutes a clash based on the experimental structure of GTP-1 bound to 

AD PHF tau (Supplemental Fig. 2).19 For each pose that passes the symmetry check, we add the 

van der Waals interaction of the original molecule and the transformed version to the total 

DOCK score function, with the same AMBER 4.0 united-atom force field parameters as the 

ligand-protein van der Waals energy.31,39–41 

 
Figure 1. A demonstration of SymDOCK by docking GTP-1 into the structure of it bound to AD 
PHF tau (PDB ID: 8FUG). a-b. SymDOCK generates poses for molecules as DOCK 3.8 normally 
does and then applies a symmetry check: if the molecule (blue) and its translated/rotated copy 
(purple) have no atoms within 2 Å of each other, the pose passes the filter (a., with the dummy 
example of the experimental pose). If the molecule and its copy have atoms within this 
distance, the pose fails the filter (b., showing the top pose of docking without the symmetry 
requirement). SymDOCK only evaluates ligand-ligand van der Waals energies of poses that pass 
the filter, and only does so for the first pairs’ energies, since ligand-protein interactions will be 
the same at every site by symmetry (ligand-protein interaction terms are evaluated as in 
DOCK3.8 for the first ligand pose in the stack) . c. To avoid edge effects from modeling a small 
fraction of a fibril that should be nanometers in length, we artificially extend the input protein 
structure using the symmetry operation. This cryo-EM structure only contains 5 monomers of 
tau in each protofilament, but by applying the affine transformation and its inverse on the 
monomer atom positions we can generate new atom positions for a fibril of 15 monomers 
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(bronze for original structure, blue for applying symmetry operation, and magenta for applying 
the inverse symmetry operation). 
 

Changes to the DOCK Score Grids In addition to the explicit ligand-ligand interactions, 

we slightly change how we calculate the grids for the ligand-protein interactions. Since the 

protein fibril is hundreds of nanometers long, its interactions with any small molecule ligand 

should be periodic.11 We simulate this by artificially extending the fibril structure to more 

monomers than what is in the deposited structure (Fig. 1c). For example, the cryo-EM structure 

of GTP-1 bound to AD PHF tau (PDB ID: 8FUG; we used an earlier version of the structure) only 

contains 5 monomers of tau in each protofilament. By applying the affine transformation and 

its inverse on the monomer atom positions, we can generate new atom positions for a fibril of 

15 monomers. We then feed the longer fibril into the Pydock3 procedure42 for generating the 

van der Waals, electrostatic, and desolvation grids and see that these grids do not have edge 

effects in the region of interest to docking (Supplemental Fig. 3). 

 

 We also change the electrostatic and desolvation grids to account for the changed 

dielectric environment of a stack of organic ligand molecules (Supplemental Fig. 4). Part of the 

normal DOCK3.8 optimization procedure includes adding a low dielectric layer that extends the 

boundary of protein atoms into the bulk solvent.31,39,42 This increases the magnitude of 

electrostatic interactions, attempting to balance the non-polar terms in docking, which often 

dominate.  In SymDOCK, we have two sources of large-magnitude van der Waals energies: 

ligand-protein interactions and ligand-ligand interactions. Extending the low dielectric boundary 

for both electrostatic and for desolvation grids to the positions of the heavy atoms in a stack of 
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ligands in the experimental structure helps to overcome this bias toward non-polar terms and 

mimics the ligand binding’s effect on the dielectric boundary (Supplemental Fig. 5). Such a 

ligand perturbation to the dielectric boundary becomes even more important with a stack of 

ligands bound to the fibril. 

 

ANI-Based Stack Filter The energetic favorability of the molecular poses returned by 

SymDOCK may be screened using the ANI-2x molecular force field, as implemented in 

TorchANI.34,35 ANI-2x is a neural network trained to predict the ground state energies of small 

organic molecules, as calculated by density functional theory at the ωB97X/6-31G* level. We 

reasoned that the ANI-2x force field provided the best compromise between throughput and 

accuracy for the goal of determining the per-monomer ground state energies of the stacks of 

small molecules generated by SymDOCK. 

 

We first estimate the SymDOCK-predicted geometry’s per-monomer energy, then use 

that as a starting geometry for a Monte Carlo optimization via the Metropolis-Hastings 

algorithm.43 We sample each candidate move by taking translations from a multivariate normal 

distribution and rotations from an isotopic normal distribution on SO(3) (the group or rotations 

in 3D).44 For each candidate move, we generate the two nearest symmetry mates of the 

molecule, evaluate the ANI energy, and determine the per-monomer energy (Supplemental 

Methods). After 1,000 Monte Carlo steps, we compare the minimum energy configuration 

achieved to SymDOCK’s output both in terms of ANI-generated energy difference and RMSD. 

We do not alter the conformation of the molecule from what SymDOCK produces. 
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Results 

Retrospective Pose Reproduction. Reproducing experimental poses of known binders 

was a first metric we used to evaluate SymDOCK. Typically, reproducing the ligand pose by 

docking it back into its native complex is considered necessary in the field, but here there is the 

complication of regenerating the full ligand stack.  We began with the PET tracer GTP-1, 

docking it back into its complex with the AD PHF tau fibril.  As is typical, we used pseudo 

atoms (“spheres”) nucleated around the known ligand coordinates to define the sampling, and 

calculated van der Waals, Poisson-Boltzmann electrostatic, and desolvation energy potential 

grids to evaluate ligand protein complementarity.31,39,45  SymDOCK sampled GTP-1 in 1507 

orientations in the fibril site, and multiple conformations within each orientation.46 Each pose 

was checked for the ability to generate a symmetry mate that does not clash with itself using the 

fibril symmetry operator (Fig. 1a). If a pose passed this check, then SymDOCK calculated the 

van der Waals, electrostatic, desolvation and, new to SymDOCK, ligand-ligand van der Waals 

energies.  We then ranked allowed poses by total DOCK score.  When we compared the highest-

scoring docked pose of GTP-1 to its experimental geometry, the root-mean-squared difference 

(RMSD) was 1.165 Å, with the three-ring system of the ligand almost exactly superposed and 

the differences coming from the flexible tail (Fig. 2a, Supplemental Fig. 6).  Similarly, docking 

EGCG back into its complex in the inter-protofilament cleft of AD PHF tau led to an RMSD of 

2.91 Å to the experimental structure for the best-fitting pose (Fig. 2b). This pose was the second-

best according to DOCK score (ignoring poses that differed only in placement of phenolic 

hydroxyl hydrogens), and the highest-scoring one had an RMSD of 6.83 Å from the 

experimental structure (Supplemental Fig. 7). Despite the RMSD of the best fitting, 2.91 Å 
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pose, SymDOCK recapitulated most of the key polar interactions observed in the experimental 

structure, including hydrogen bonds to Asn327 and His329 on one side of the cleft and Glu338 

and Lys340 on the other. Just as importantly, all the predicted poses captured the ligand-ligand 

aromatic stacking. Finally, docking flortaucipir back into its complex with CTE Type I tau led to 

an RMSD of 0.477 Å for the best docking pose, 7.78 Å for the top scoring one, and RMSD 

values between of 7.49Å and 7.74 Å for the poses scoring between those two (Fig. 2c, 

Supplemental Fig. 8). When we compared GTP-1’s, EGCG’s and flortaucipir’s SymDOCK 

poses to their ANI-optimized geometries, the ligand-ligand energies improved but the structures 

changed only between 0.6 and 1.1 Å in RMSD (Supplemental Table 1).  Crucially, in all three 

of the docked complexes the ligand-ligand packing and quadrupole stacking closely resembled 

those in the experimental structures. 

 
Figure 2. Retrospective pose reproduction, with the protein in beige, the cryo-EM pose in blue, 
and the SymDOCK-predicted pose in purple. a. GTP-1 docked into in the PET-tracer-site of AD 
PHF tau, RMSD to the experimental structure 1.2 Å. b. EGCG docked into the inter-
protofilament cleft of AD PHF tau, RMSD to the experimental structure 2.9 Å.  c. Flortaucipir 
docked into  CTE Type I tau, RMSD to the experimental 0.48 Å. 
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Retrospective Enrichment of Ligands Over Decoys. We were curious if the symmetry 

docking approach could identify plausible fibril ligands from among a large molecular library.  

We began by asking whether SymDOCK could prioritize known ligands versus a much larger set 

of property-matched decoys.  Docking against AD PHF tau, we docked the PET ligands GTP-1, 

MK-6240, and a set of 14 MK-6240 analogs, drawn from a larger group of 94 to maximize 

diversity (Supplemental Table 2).20,47 We generated 50 property matched decoys for each 

ligand, for 800 total.48,49 Docking the 16 ligands and 800 decoys against the GTP-1-bound 

structure of AD PHF tau resulted in an adjusted logAUC enrichment of 32.7 and an enrichment 

factor at 1% (EF1%) of 6.4 (Supplemental Fig. 9).39,50  The better ranking of the known ligands 

versus the decoys reflects their better ability to form stacks that recapitulate the fibril 

symmetry and can interact with it.  For instance, ZINC000000035542 is a 1.2.2-bicyclo that can 

dock to the receptor grids using the non-symmetric default DOCK3.8 procedure, but its 3-

dimensional ring structure prevents it from docking symmetrically (structure in Supplemental 

Fig. 10). Even though this decoy has properties matched to the known ligands, the symmetry 

check prevents it from scoring and improves enrichment. 

 

Docking 22 Million Molecules from ZINC22. Some of the decoys from the enrichment 

calculation scored well and looked plausible, making good stacking interactions with 

themselves and packing in the fibril to mimic its symmetry. We wondered if there might be 

many molecules in a general library that might be suitable to form symmetrical stacks in a fibril. 

To test how symmetry docking would work in a large library screen, we docked 22 million 
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molecules from the ZINC22 database36 against the GTP-1-bound form of AD PHF tau. We 

selected molecules that were similar in gross properties to GTP-1: neutral, with heavy atom 

count between 21 and 23, and clogP values between 3.30 and 3.50.51,52  The 22 million 

molecules docked in 17,800 core hours (less than a day on a typical 1000-core cluster), 2.90 

seconds per molecule per core which is two to three times slower than typical for standard 

docking with DOCK3.8.32 When passed through the ANI-based filter, the configurations of the 

stacked ligands typically changed only modestly (Supplemental Fig. 11), and the energy 

changes were similar to what we had seen with the PET ligands (Supplementary Table 1).  

Visually, many of these top 5000 molecules stacked in plausible ways, typically making one or 

two polar interactions with the fibril, akin to what is observed in the experimental ligand-fibril 

structures. For instance, ZINCnD000001AHba appears to make a single hydrogen bond to 

Lys353 from its amide carbonyl (Fig. 3a). The molecule stacks with a symmetry reflecting that of 

the overall fibril, and the 4.7 Å translation ensures that the putative quadrupole-quadrupole 

interactions that the benzothiophene and quinoline rings make are weak,53–55 but with water 

exclusion still likely contributing to a hydrophobic effect of stacking. Meanwhile, 

ZINCmD000004I6kF and ZINCnF000004BXys are not posed to form explicit hydrogen bonds with 

the fibril, instead making van der Waals contacts with it and, perhaps more importantly, making 

extensive ligand-ligand stacking interactions (Fig 3b-c). Self-stacking also seems to dominate in 

the pose of the amide-linked phenyl-benzimidazole ZINClD000002Tbny, which again makes no 

formal hydrogen bond to the fibril (Fig. 3d). When docked to the same site, the known PET 

ligands GTP-1 and MK-6240 would have placed among the top 5 to 7% best-scoring molecules 

in this screen of 22 million (the ranking of the other 14 known ligands used in the retrospective 
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study are in Supplemental Table 3). The poses of the molecules taken from ZINC22 lack 

experimental testing and should not carry too much weight, but they do support the plausibility 

of large library screens using a symmetry-based ligand stacking approach. 

 
Figure 3. Stacking and polar interactions to the AD PHF tau (beige) among docked poses of four 
representative high-ranking molecules from a 22-million-molecule library screen (blue). a. The 
benzothiophene-quinoline ZINCnD000001Ahba. b and c. The triaryls ZINCmD000004I6kF and 
ZINCnF000004Bxys. d. The amide-linked phenyl-benzimidazole ZINClD000002Tbny. 
 

Prospective Pose Prediction. Encouraged by the retrospective results and the ability to 

generate plausible geometries from large library screens, we tried the method for genuine 

prospective pose prediction.  Aware that the structure of the PET ligand MK-6240 was being 

determined against AD PHF tau fibrils, we docked that molecule against the structure of AD PHF 

tau in its GTP-1 complex using SymDOCK.  When we compared the predicted docked poses to 

the subsequently-determined cryo-EM electron density, we found that the 9th-best scoring pose 

came close to fitting the electron density (Fig. 4a-b) and captured the symmetry and the overall 
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placement of the ligand stack.  The one discrepancy was that the ligand stack extended out of 

the cryo-EM density in its pyrrolo-pyridine ring and did not completely fill it on the other side of 

the molecule, indicating a simple rigid-body translation of the SymDOCK pose could better fit 

the density. Indeed, comparing the final refined position for the ligand stack to that predicted 

by the docking, the RMSD of 2.13 Å can be mostly attributed to a rotation about the axis of the 

fibril (Fig. 4c-d).  Indeed, the structure was close enough that the docked pose was used as the 

input for refinement of the final experimental structure of the MK-6240/AD PHF tau complex.56 

We note that although this was the 9th-best scoring structure, the best pose by DOCK score ha 

an RMSD of 3.01 Å from the experimental structure, and the third-best scoring pose had an 

RMSD of 2.27 Å to the experimental structure. 

 

Figure 4. Prospective pose prediction for MK-6240 in AD PHF tau. a-b. The electron density of 
the MK-6240-tau structure (black mesh showing the 0.0117 level) with the modeled protein in 
beige and SymDOCK-predicted pose in purple. a. Looking down the axis of the fibril. b. Looking 
into the open trough of the fibril. c-d. The final refinement of the MK-6240 pose into the 
electron density (blue) using the SymDOCK-predicted pose as input. 
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Discussion 

 An arresting feature of the recent tau fibril structures is the adoption of symmetrical 

stacks by their ligands (Figs. 2 and 4).  Ligand-receptor interactions are few in these structures, 

with the most extensive contacts coming between the ligands themselves.  For a receptor with 

multiple symmetrical sites, adoption of such ligand stacks may be the favorable mode. 

Considerations of entropy coming from the number of sites and cooperativity from the ligand-

ligand interactions may explain how molecules with so few fibril interactions may nevertheless 

bind in the nM range, as many of the PET ligands do.  A challenge for ligand discovery is 

exploiting the symmetrical fibril sites and ligand-ligand interactions, as most docking methods 

anticipate a 1:1 ligand-to-receptor stoichiometry and are designed to explore multiple ligand 

poses unencumbered by symmetry or stacking.   

 

The SymDOCK approach adapts docking by imposing the symmetry of the fibril on any 

ligand geometry, insisting that there are no ligand-ligand van der Waals clashes.  The method 

succeeds retrospectively in finding the experimental poses of four topologically unrelated PET 

ligands to tau (Figs. 2 and 4). While the symmetry calculation and the internal clash checks add 

operations to docking, these are compensated by the constraint imposed on pose selection by 

insisting on symmetry, and so the method loses little speed.  A user can thus perform large 

library screens seeking new ligands.  While these predictions remain to be tested 

experimentally, known fibril ligands are enriched both against property matched decoys 

(Supplemental Fig. 9) and in screens of 22 million diverse molecules (Supplemental Table 3). 

The new ligands’ poses seem plausible, forming stacks around planar aromatic and 

heteroaromatic systems while preserving the symmetry of the fibril (Fig. 3).  In a genuine 

prospective prediction, the method correctly predicts the binding pose of MK-6240 to AD PHF 
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tau (Fig. 4), and that docking pose was in fact used in the solution of the ligand-complex 

structure as determined by cryo-EM.56  

 

Several limitations of SymDOCK merit airing.  For speed of calculation, we have used a 

2 Å cutoff to define ligand-ligand clashes, which misses those owing to large radii atoms like 

bromine or iodine. Only evaluating the favorability of a stacking geometry using the AMBER 4.0 

united-atom force field’s van der Waals parameters ignores higher-order effects from π-π 

stacking and electrostatics.40,41 We have explored compensating for this with more detailed 

evaluation using the DFT-derived ANI,34,35 though this is slow enough to limit application to 

rescoring post-docking. We currently only use the symmetry operation (affine transformation) 

from the protein, but it is possible that other symmetries of a ligand stack could fit the pocket. 

For example, one could imagine ligands that bind in a 2:1 stoichiometry by forming stacks of 

molecules alternating in orientation with respect to the protein by 180° rotations. Finally, we 

have shown that prospective large library screens are mechanically possible using SymDOCK 

and produce plausible symmetrical stacks, but prospective hits and binding modes will demand 

experimental testing. For now, these predictions merely suggest that it should be possible to 

test this method for ligand discovery.   

 

Notwithstanding these caveats, the key observations from this study should be clear.  

Imposing symmetry and excluding ligand-ligand clashes is an effective approach for docking 

ligands that form extensive, symmetric stacks against fibril proteins, and potentially other 

proteins with symmetrical sites. Because we used a relatively simple approach to this problem, 

the method is fast enough for use in large screens. Encouragingly, by insisting on symmetry and 
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excluding clashes, the method seems to capture the key features of the symmetrical ligand 

stacks, despite ignoring higher-order energetic terms. We have implemented the symmetry 

docking approach in a program SymDOCK (freely available for academic research at 

https://dock.compbio.ucsf.edu/); we suspect that this approach may be readily adapted to most 

docking methods.57–73   
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Code Availability: SymDOCK is available without charge for academic research as part of 

the DOCK3.8 suite of programs at https://dock.compbio.ucsf.edu/.  
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