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Docking and chemoinformatic screens for new ligands and
targets
Peter Kolb, Rafaela S Ferreira, John J Irwin and Brian K Shoichet
Computer-based docking screens are now widely used to

discover new ligands for targets of known structure; in the last

two years alone, the discovery of ligands for more than 20

proteins has been reported. Recently, investigators have also

turned to predicting new substrates for enzymes of unknown

function, taking docking in a wholly new direction. Increasingly,

the hit rates, the true-positives, and the false-positives from the

docking screens are being compared to those from empirical,

high-throughput screens, revealing the strengths, weaknesses,

and complementarities of both techniques. The recent

efflorescence of GPCR structures has made these

quintessential drug targets available to structure-based

approaches. Consistent with their ‘druggability’, the docking

screens have returned high hit rates and potent molecules.

Finally, in the last several years, an approach almost exactly

opposite to docking has also appeared; this pharmacological

network approach begins not with the structure of the target

but rather those of drug molecules and asks, given a pattern of

chemistry in the ligands, what targets may a particular drug

bind to? This method, which returns to an older, pharmacology

logic, has been surprisingly successful in predicting new ‘off-

targets’ for established drugs.
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Since the work of Goodford in the mid-1970s [1], protein

structures have held the promise of guiding the design of

drugs. As is often true, the early potential of the field was

largely unmet, and in the early 1990s there was a sense

that ‘structure-based drug design’ was not pragmatic. In

the last decade, however, the use of structure-based

computational design has made steady, if often unspec-

tacular [2] technical progress, to the point where most

pharmaceutical organizations have substantial groups
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devoted to its application. If one asks, ‘How many drugs

have been discovered entirely by structure-based

methods?’, the answer will be ‘none’, as these methods

largely contribute only to the discovery and early optim-

ization of leads for drug design. If one asks, conversely,

‘To the development of how many drugs have structure-

based methods been critical?’ then the answer will be

close to 10. Whereas this number must seem small, it is

put into perspective by the number of drugs that owe

their origin to empirical high-throughput screening (as of

this writing, only two or three [3], though many more are

now in trials or awaiting approval).

Perhaps the area where structure-based methods have

had the most quantifiable impact is in computational

screens of large compound libraries, looking for new

chemical matter that will bind to and modulate a protein

of known structure. These ‘virtual’ or ‘structure-based’

screens typically use molecular docking programs to fit

small organic molecules into protein structures, evaluat-

ing them for structural and chemical complementarity.

Several million molecules may be docked into the struc-

ture of the target protein, and those that fit best, according

to the docking scoring function, will be tested exper-

imentally (Figure 1). Although these scoring functions

retain substantial inaccuracies, the focus on commercially

available molecules has made failure cheap — since one

can always just purchase and test the next set of com-

pounds — and so pragmatic. In the last two years alone,

more than 20 papers have appeared in which docking

screens were used to predict a ligand, which was then

subsequently confirmed by experiment (Table 1). Most

of these studies emerged from academic research groups;

many others that have been conducted in industrial

groups remain unpublished.

Here we focus on research directions in structure-based

screening that, even very recently, would have been hard

to anticipate. We begin with efforts to combine virtual

and high-throughput screens. These campaigns enable

the discovery of false-positives and false-negatives for

both techniques, and their combination reveals comp-

lementary strengths. We then turn to the use of structure-

based screens against membrane-bound receptors, the

structures for which have only recently become available.

Finally, we consider methods that turn the structure-

based paradigm on its head, asking not what ligands

might be discovered based on the structure of the targets,

but rather what targets might be discovered from the

identity of the ligands.
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Figure 1

Structure-based screens for novel ligands. Large libraries of

commercially or otherwise available compounds are fit into target

structures by a docking computer program. Each molecule is sampled in

thousands to millions of possible configurations and scored based on

structural complementarity to the target protein. Of the perhaps millions

of molecules in the library, tens to hundreds of top-scoring hits are

subsequently tested for activity in an experimental assay.
Virtual versus high-throughput screening
A stringent test of a docking screen is to compare it to a

high-throughput screen (HTS), where every single mol-

ecule in a library is empirically tested, not just the top-
Table 1

Docking predictions subsequently confirmed by experiments: 2007 to

Target Docking

AdoMetDC [4] Glide

AHAS [5] DOCK 4/Au

Aldose reductase [6] N/A

CDC25 phosphatase [7] FRED/Surfl

DNA gyrase [8] DOCK 5

EphB4 [9] DAIM-SEED

FFAR1 [10] Glide

Histamine H4 [11] FlexX

Human pregnane X [12] Surflex

MCH-R1 [13] ICM

Pim-1 kinase [14] Glide

PNP [15] GOLD

PPAR-g [16] Glide/IFD

Tm0936 [17] DOCK 3.5

TRH-R1/TRH-R2 [18] FlexX

b2-Adrenergic receptor [19�] DOCK 3.5.

b-Lactamase [20�] DOCK 3.5.

SHP2 [21] DOCK

Al-2 quorum sensing [22] DOCK 5

Anthrax edema factor [23] HINT/AutoD

hPRMT1 [24] GOLD
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scoring 50 or several hundred suggested by docking. This

could reveal not only false-positives but also false-nega-

tives of docking, which would otherwise always remain

opaque, but also whether docking hit rates were high

enough to justify the focus on only a relatively small

number of candidate ligands. In studies beginning in the

early 2000s, this turned out to be the case, with docking hit

rates being 10-fold to 1000-fold higher than those returned

by HTS against the same target [25–28]. Whereas these

early studies were encouraging, the full set of docking

predictions was not compared to the HTS results, and

sometimes different compound libraries were used.

In recent studies exactly the same molecules have been

docked and screened empirically, against exactly the

same target. In a quantitative HTS (qHTS, where each

compound is tested in 7-point dose response) of more

than 70 000 compounds against AmpC b-lactamase,

qHTS yielded 1274 initial hits. A detergent counter-

screen revealed 95% of these to be colloidal aggregators,

which are typically the largest source of false-positives in

biochemical assays [29]. Of the 70 ‘hits’ that remained, 25

were b-lactams, which are known to covalently bind to b-
lactamase, and so are uninteresting except as controls, 24

were irreproducible on retesting, 9 were aggregators that

resisted the low levels of detergent used in the counter-

screen, and 9 were promiscuous covalent inhibitors [20�].
No reversible, specific, competitive inhibitors were found

by HTS whatsoever.

This result was unexpected — a goal of the exercise had

been to reveal docking false-negatives, but with no new

molecules discovered by the qHTS, this was impossible.
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Figure 2

A docking-derived novel b-lactamase inhibitor. Structure of the new inhibitor and overlay of the crystal structure (white carbons) to the initial pose

proposed by DOCK (magenta carbons). The RMS deviation of the heavy atoms between the two poses was 0.9 Å.
To explore whether the empirical screen suffered from

false-negatives, 16 high-ranking docking hits were

retested in low throughput at concentrations higher than

used in the qHTS campaign (where the maximum con-

centration of compounds was 30 mM). Two mid-micro-

molar competitive inhibitors were found, one that had

ranked 80th and one that had ranked 200th of the 66 000

library molecules docked. These compounds had Ki

values of 37 and 55 mM, and IC50 values higher still, which

explains why they were missed by the qHTS. Sub-

sequently, a crystal structure of AmpC in complex with

one of these inhibitors showed close correspondence

between the X-ray structure and that predicted by dock-

ing (Figure 2) [20�].

In a search for formylpeptide receptor ligands, approxi-

mately the top 1% of the library ranked by virtual

screening was tested by HTS, and nine chemical

families of hits were confirmed [30]. In another study,

a combination of 2D and 3D similarity approaches

was used to screen 10 000 compounds against the

estrogen receptor GPR30. Biochemical screens of the

top 100 ranked compounds identified a potent ligand

(Ki = 5.7 nM) [31]. These studies illustrate how prioriti-

zation of compounds to be tested can lead to the identi-

fication of true hits. However, they do not answer the

question of how many scaffolds were missed by virtual

screening. To do so one needs to screen exactly the same

library by both methods and compare the hits. A good

example of such a study was reported in a search for

GSK-3b in which four out of six scaffolds found by HTS

were found in the top 1% by docking [28], indicating the

potential for using virtual screening as a guide in the

follow up of HTS hits. Unfortunately, few direct com-

parisons between these methods are currently reported,

and a bigger number of similar studies would help to

draw conclusions on how frequently such success is

attained by virtual screening.
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At this early point, three tentative lessons may be drawn:

first, both docking and HTS suffer from false-positives

and false-negatives; second, that an intense amount of

work is required to follow up and confirm screening hits;

and third, that the two techniques may complement each

other. These conclusions are supported by a new docking

and qHTS campaign of now 198 000 molecules against

the enzyme cruzain, with the proviso that here, finally,

screening revealed docking false-negatives (unpublished

results). How reliable these conclusions are, and whether

we may expect docking and HTS to be combined as a

standard procedure, must await the outcome of further

studies now underway.

Docking to membrane proteins
Structure-based approaches to ligand design for mem-

brane proteins have been hampered by a lack of X-ray

structures. This was especially grave in the case of gua-

nine nucleotide-binding protein (G-protein)-coupled

receptors (GPCRs), where, until recently, only the struc-

ture of rhodopsin was known [32]. This absence was

keenly felt, as 25% of drug targets are GPCRs, and

40% of drugs bind to these targets [33]. To overcome

this gap, protein structure modeling was widely used to

generate 3D structures as scaffolds to which to dock. In

the past two years, modeling was mainly concerned with

the refinement of the ‘raw’ modeled structures. These

structures were then successfully used in several docking

screens, although the hit rates remained low [13,18,34�].

The recent determinations of the structures of the b2-

adrenergic (b2AR) [35,36�], the b1-adrenergic [37�], and

the adenosine A2A [38�] GPCRs reveal why these recep-

tors are wonderful targets for small molecules. The bind-

ing sites almost entirely enclose the ligands, ensuring

close complementarity. Each site combines a mixture of

polar groups, allowing for specificity, and non-polar ones,

for affinity (Figure 3). The use of an X-ray structure for
Current Opinion in Biotechnology 2009, 20:429–436
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Figure 3

The GPCR b2AR as a target for structure-based screening. (a) Side view of the orthosteric site, the proximal portion of the protein has been cut away

for clarity. Several key interacting residues are marked. Red and green dashed lines indicate polar and hydrophobic contacts, respectively. Residues in

a light-blue box are essential for agonist and antagonist binding. (b) Comparison of the docked pose of a docking-derived, 9 nM inverse agonist [19�]

(gold carbons), with the X-ray structure of carazolol (cyan). Hydrogen bonds are shown as green sticks, and residues Asp-113 and Ser-203 are

emphasized with red oxygens. (c) Predicted binding mode of a docking-derived novel ligand [19�] (gold carbons), chemically distinct from previously

known bAR ligands. The distances between the alkyl substituents and the respective closest oxygen of Asp-113 are shown as dashed lines.
docking should be a substantial advantage over modeled

structures, not least because of how the structure reveals

the precise layouts of the receptor binding sites and their

interactions with the ligand. With these new structures,

can we anticipate an efflorescence of ligand discovery,
Current Opinion in Biotechnology 2009, 20:429–436
will they be better templates for discovery than the

homology models that preceded them, and how will

the new ligands compare to those discovered, over the

last 50 years, by traditional ligand-based methods, which

progressed without the advantage of a crystal structure?
www.sciencedirect.com
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In a screen against the b2AR, about a million ‘lead-like’

molecules from the ZINC database (http://zinc.dockin-

g.org) were screened against the structure of the target.

Twenty-five were chosen from the top 400 docking-

ranked molecules and tested in ligand displacement

assays. Six modulated b2AR with affinities between

9 nM and 4 mM, a hit rate of 24% [19�] (Figure 3). Intrigu-

ingly, five of these were inverse agonists, as was the ligand

bound in the X-ray structure, carazolol, against which the

screen occurred. In a similar study, an in-house database

of 400 000 ligands was screened against b2AR [39]. 36% of

the molecules tested were active, with the best having a

0.114 nM Ki. An innovative experiment was to dock for

pharmaceutical chaperones of misfolded rhodopsin [40].

About 24 000 compounds were docked from the NCI

database against the X-ray structure of the P23H

mutation of opsin, which is associated with retinitis

pigmentosa. Five docking prioritized compounds were

tested, one of which was weakly active as an inhibitor of

opsin regeneration.

The relatively high hit rates and high potencies of the

ligands to emerge against the X-ray structures support the

idea that these are better templates for discovery and

design, compared to the earlier homology models. This is

borne out in a community-wide, blind assessment (GPCR

Dock 2008 [41]) of the prediction of the structure of the

human adenosine A2A receptor in complex with the ligand

ZM241385 [38�]. Twenty-nine groups submitted a total

of 206 structural models before the actual publication of

the X-ray structure. The best model had a ligand rmsd of

2.8 Å and a Ca rmsd of 3.0 Å, but ranked only second

among the models submitted by that participant. Slightly

more discouragingly, the average rmsd of the ligand

predictions was 9.5 Å, despite an average Ca rmsd of

only 4.2 Å between protein model and X-ray structure.

This indicates that docking did not work well and is

sensitive to changes in protein structure, a point that

has been made before.

By docking standards — where a 5% hit rate is considered

substantial, and where a ‘hit’ might have a mid-micro-

molar affinity, the results in the GPCR docking screens

seem extraordinary. This is partly explained by the sub-

stantial bias in even our commercial libraries toward

GPCR-like ligands, the product of 50 years of intense

medicinal chemistry in this area. On the other hand, the

b2AR and opsin docking screens suggest that despite the

attention lavished on these targets, novel chemotypes,

with arguably new biology, may yet be found. Both

observations support the idea that further structure-based

screens against GPCRs, both those now determined and

the new structures that are eagerly anticipated, will merit

the effort. A challenge for the future will be leveraging

the often antagonist, or inverse agonist, bound complexes

to discover agonists; recent work from the Rognan and

Abagyan labs suggest that this will be possible [42,43].
www.sciencedirect.com
Predicting the activities for enzymes of
unknown function
In the early years of docking several investigators enter-

tained the idea of predicting not only what would inhibit an

enzyme or a receptor, but also their true physiological

substrates and agonists. For two reasons the idea was

put aside. First, we could not then (early 1990s) imagine

many proteins whose structures had been determined but

whose functions remained unknown — why would anyone

go to such trouble? Second, predicting activity seemed

much harder than predicting inhibitors of activity, notwith-

standing the relevance of both for drug discovery and for

biological understanding. This idea thus remained little

more than idle conversation for two decades.

With the advent of the Structural Genomics projects,

however, an increasing number of proteins of unknown

function have had their structures determined, more than

50 such are cataloged by the Protein Databank (PDB)

alone. This has inspired several groups to return to the

challenge of predicting the enzyme activity. Whereas the

original technical concerns remain germane, not least

because of the difficulties in modeling conformational

changes to which activity is often coupled, there are

preliminary signs of progress. Thornton and colleagues

have investigated docking a limited set of metabolites

against the structures of short-chain dehydrogenases/

reductases, exploring different docking protocols in retro-

spective studies [44]. An interesting aspect of this work is

the use of representative metabolites to represent a class

of molecules, reducing computational costs. In more

prospective work, Hermann and co-workers and Xiang

and co-workers have predicted and tested the activities of

two targets from structural genomics — the amidohydro-

lases Tm0936 [17] and Dr0930 [45]. Docking the high-

energy intermediate, transition-state-like forms of the

KEGG metabolites, Tm0936 was correctly predicted to

act as a deaminase of adenosine and S-adenosine homo-

cysteine, while Dr0930 was correctly predicted to act as a

lactonase. Whereas both of these predictions were con-

firmed experimentally, close inspection of the results

reveals the strengths and weaknesses of the approach.

For Tm0936 the docking was almost entirely correct —

not only was the right substrate predicted, but also was its

docked geometry compared to a crystal structure of the

product of the reaction that was subsequently determined

[17]. With Dr0930, conversely, whereas the docking

identified lactones as a general class of substrate, the

precise preferences among lactones was not captured,

as d-lactones were predicted to be as good as, often better

than g-lactones, when in fact the reverse was found to be

true. Thus docking the high-energy intermediate forms of

the metabolites was grossly successful, but missed

important particulars.

Thus it is too early to tell whether a structure-based

approach to function prediction has yet overcome the
Current Opinion in Biotechnology 2009, 20:429–436
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concerns that kept it on the sidelines for the last two

decades. What can be said is that it is no longer so

sidelined, and is being pursued actively by several groups.

Hopefully, two years from now when the next version of

this review becomes timely, we will have a better sense if

this approach has advanced to the point of reliability —

for now, it remains intriguing enough, with enough pre-

liminary successes, to justify a focused research effort.

Polypharmacology and the chemical view of
biology
The logic used by classical pharmacology inverts the

target-oriented approach of molecular biology — in

pharmacology, biology is characterized by the actions

of organic small molecules. Even now, most receptors

are characterized by more or less specific ligands that, for

instance, distinguish a-adrenergic from b-adrenergic

receptors, and b1 subtypes from b2. Recently, compu-

tational chemists and biologists have returned to this

older chemical view, quantifying the relationships among

receptors based not on their structures or sequences, but

on chemical patterns among the ligands that bind to them.

This has revealed connections among targets that to a

traditional pharmacologist — now largely extinct —

might seem entirely reasonable, but to the now dominant

molecular view will be surprising.

A seminal paper in this area, by Hopkins and colleagues

when at Pfizer, mapped the links among targets as articu-

lated by shared ligands. Many targets that were unrelated

by sequence or structure nevertheless had common

ligands [46]. Similarly, Vidal and colleagues adapted

network techniques developed for protein–protein

association to drug–target associations [47]. Many drugs

shared multiple targets, and unsurprisingly the converse

was also true. Older drugs were often distinguished from

newer, sometimes investigational drugs by the greater

specificity of the latter, which the authors attributed to

the influence of target-based or ‘rational’ design. A com-

parison of drug targets to those directly involved in

disease etiology suggested that most drugs bound to

proteins distant from the etiological targets, implying

that most drugs did not work on the cause of the disease,

but were rather palliative.

In contrast to the trends toward specificity inferred by

Vidal, Roth has argued that polypharmacology is not only

common but that, especially in the CNS, it is often

essential for efficacy [48] (polypharmacology is taken to

mean the action of one drug on multiple targets at

physiologically relevant concentrations). Effective CNS

drugs typically target at least two targets, such as seroto-

nin and dopamine subtypes, and often more; genuine

specificity correlates with lack of efficacy. Roth has estab-

lished an NIH Roadmap Psychoactive Drug Screening

Program (PDSP, http://pdsp.med.unc.edu/indexR.html)

to screen pharmacologically active agents against a broad
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spectrum of targets, including more than 300 GPCRs and,

increasingly, ion channels, transporters, and kinases.

Recently, systematic screening has revealed that the

histamine H1 receptor can be responsible for weight gain

under antipsychotic treatment, an enormous problem for

drugs such as Zyprexa, that the kappa opioid receptor is

the target of the potent hallucinogen salvinorin A, and

that the clozapine metabolite desmethylclozapine acti-

vates M1 muscarinic receptors, which may contribute to

the clinical efficacy of the parent antipsychotic [49].

In collaboration with Roth’s group, we have tried to

predict and test new off-target effects of established

drugs. Drawing on a systematic map relating drug targets

by their ligands, using BLAST-derived algorithms to

normalize for random chemical similarity, we found that

targets related by ligands quantitatively differed from

those related by sequence [50�]. For instance, the ser-

otonergic 5HT-3 receptor was closely related to the

5HT-4 receptor, even though the former is an ion chan-

nel and the second a GPCR; both bind congeners of

serotonin. Similar relationships among the ligands for

multiple ionotropic (ion channels) and metabotropic

(GPCRs) receptors, and even transporters, were

observed. On the basis of these observations, new off-

targets were predicted, including the antagonistic effects

of the m-opioid methadone on M3 muscarinic receptors,

the activity of the antiparasitic emetine on a-adrenergic

receptors, and the activity of the gut m-opioid loperamide

on NK2 receptors. When tested in the Roth lab, all three

had low or submicromolar activities on their predicted

off-targets. Similarly, Bork and colleagues at the EMBL

have analyzed the shared side effect profiles of 746 drugs

using a text-based analysis of drug inserts, correlating

these with chemoinformatic similarities. A network of

1018 drug–drug relations was revealed, 261 of which

were formed among dissimilar drugs from different

indications. Twenty specific drug off-targets were tested,

and 13 were confirmed experimentally [51��]. Other

studies, which return to a more structure-based method

for predicting off-target effects, including docking, have

also revealed new off-targets, though these efforts

remain at an earlier stage than the chemoinformatics

approaches [52].

Drug polypharmacology is common [53], occasionally

essential, often has unwanted side effects [54], and can

cross classic molecular categorizations. The most success-

ful methods to characterize and, occasionally, predict

[50�,51��] such off-target effects have been those that

are strictly ligand-based, but is there a way to understand

these effects from a molecular target view? In a fascinat-

ing recent paper, Klebe and colleagues compared the

structural similarities of binding sites among often unre-

lated targets, and find that the similarity among these is

often unrelated to the sequence identities of the proteins

that harbor them [55]. It may be that as the ligand-bound
www.sciencedirect.com
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structures of more and more targets become available, we

will be able to understand these cross target activities. For

now, the older, pharmacological organization is, paradoxi-

cally, the more generative for predicting and classifying

polypharmacology than the structure-based approaches

which have been our primary focus here [56�].

Conclusions
With all their weaknesses, docking screens are now

common in molecular discovery. The ongoing growth

of molecular structures, not least among membrane tar-

gets, will continue to widen the remit of this technique. In

upcoming research one can look not only for the discovery

of new molecular entities, but also for their genuine

application to pragmatic problems in drug discovery

and chemical biology. In the short term, the highest

impact studies may well come from the chemoinformatics

approaches that return to an older, classical pharmacology

view of drug action, as these work with drugs themselves,

whose impact on human health and biology is already

clear.
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