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Protein flexibility remains a major challenge in library docking
because of difficulties in sampling conformational ensembles with
accurate probabilities. Here, we use the model cavity site of T4
lysozyme L99A to test flexible receptor docking with energy
penalties from molecular dynamics (MD) simulations. Crystallog-
raphy with larger and smaller ligands indicates that this cavity can
adopt three major conformations: open, intermediate, and closed.
Since smaller ligands typically bind better to the cavity site, we
anticipate an energy penalty for the cavity opening. To estimate
its magnitude, we calculate conformational preferences from MD
simulations. We find that including a penalty term is essential for
retrospective ligand enrichment; otherwise, high-energy states
dominate the docking. We then prospectively docked a library of
over 900,000 compounds for new molecules binding to each con-
formational state. Absent a penalty term, the open conformation
dominated the docking results; inclusion of this term led to a bal-
anced sampling of ligands against each state. High ranked mole-
cules were experimentally tested by Tm upshift and X-ray
crystallography. From 33 selected molecules, we identified 18 li-
gands and determined 13 crystal structures. Most interesting were
those bound to the open cavity, where the buried site opens to
bulk solvent. Here, highly unusual ligands for this cavity had been
predicted, including large ligands with polar tails; these were con-
firmed both by binding and by crystallography. In docking, incor-
porating protein flexibility with thermodynamic weightings may
thus access new ligand chemotypes. The MD approach to accessing
and, crucially, weighting such alternative states may find general
applicability.

docking | flexible receptor | molecular dynamics | model cavity

Proteins interchange between conformational states of varying
probabilities (1). These rearrangements, naturally, also alter

its physicochemical properties (2, 3). Exploiting these varying
features can benefit ligand discovery (4–7) but also presents
several challenges. Key among them is weighting the different
states by their energies, which has been shown to be crucial for
docking success (4, 8); without such weights, high-energy protein
conformations, often better suited to ligand complementarity but
harder to access, can dominate docking results, acting effectively
as decoy conformations.
Structural models of proteins in distinct conformational states

can be obtained from experiments like X-ray crystallography,
NMR, or cryoelectron microscopy. The choice of the single
structure used for a docking campaign contributes to its likeli-
hood of success and choosing any single conformation inevitably
leads to false negatives, even in successful campaigns. A solution
to this problem is to consider multiple protein conformations, of-
ten referred to as ensemble docking or flexible receptor docking (4,
9–15). Yet incorporating multiple protein conformations only in-
creases accuracy in ligand discovery when they are weighted
according to their ensemble probabilities (10, 16, 17). When such
energies have been incorporated in docking campaigns, they have
enabled the discovery of ligands that are inaccessible to single-state
docking, often with high fidelity to the subsequent structure de-
termination of ligand–protein complexes. However, incorporating

these weights has relied on experimental observables, such as oc-
cupancies from high-resolution structures. This has both limited
the range of states that may be used—since states higher in energy
than a few kilocalories per mole above the ground state will not be
observed experimentally—and cannot be generalized to the vast
number of targets for which such information is unavailable. Even
when alternative conformational states can be observed in complex
with different ligands (4, 11, 18, 19), their thermodynamic weights
in the apo ensemble are typically unknown. It would be useful to
have a general method of sampling and energy-weighting confor-
mational states that would enable their exploitation in ligand dis-
covery, in general, and for molecular docking in particular.
In principle, computationally modeled conformations, such as

those derived from molecular dynamics (MD) simulations, can
sample such states (9, 20, 21) and can estimate their thermody-
namic weighting (22–24). Encouraging studies on how MD simu-
lation can be leveraged to explore the flexibility of ligand binding
sites include work from the Bowman group, in which exhaustive
MD simulations aided the discovery of allosteric binders (6, 10).
More recently, exascale simulations of proteins central to SARS-
CoV-2 immune evasion were able to explain and predict cryptic
binding sites (25, 26). In practice, however, challenges with many
MD simulations include insufficient sampling and the difficulty in
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weighting states by relative energies. The free energy minima,
representing conformational states of a protein, are often separated
by high-energy barriers, which are rarely overcome on time scales
covered by conventional MD (cMD) simulations (1). Enhanced
sampling algorithms, such as accelerated MD (aMD) (27), intro-
duce a bias potential to lower the barriers between individual
conformational states. This makes the sampling of a diverse, con-
formational ensemble, including higher-energy conformational
states, more efficient by increasing the sampling by up to three
orders of magnitude (28–30). A core question is whether the as-
sumptions and approximations made in aMD affect its ability to
usefully weight the conformations sampled.
Here, we test energetic weights from MD simulation for ligand

discovery in the engineered cavity site of T4 lysozyme L99A
(L99A). This hydrophobic cavity was first introduced by Eriksson,
Morton, Baase, and Matthews (31–34), as a model system to
explore ligand binding and thermodynamics. While binding to
this site is not thought to affect the enzymes function (it is over
20 Å from the catalytic aspartate and does not overlap with the
muramyl peptide binding site; SI Appendix, Fig. S7), it has im-
portant advantages for exploring terms in ligand binding and
docking (here, protein flexibility). The cavity site is relatively
small, only 150 Å3 in its apo state, and is completely enclosed
from solvent in that conformation (Fig. 1A). Combined with its
dominance by apolar interactions, this simplifies the determi-
nants of ligand binding. Despite its small size, there are still many
hundreds of likely ligands that are readily available and testable
from within docking libraries, enabling prospective predictions to
test new docking terms and methods (11, 32, 33, 35–37). Previous
studies have revealed at least 68 ligands for this cavity, many of
which have protein-bound crystal structures determined (31, 38),
enabling detailed retrospective studies. Despite its simplicity,

L99A has complexities that make it interesting and relevant as a
model site, and its thermodynamics (34, 39–41), dynamics (28,
42–50), and ligand (un)binding (33, 36, 51–59) have been intensely
studied.
Particularly germane to this study, the cavity undergoes a

conformational change as larger and larger ligands bind to it,
adopting three principal conformations termed closed (150 Å3),
intermediate (∼200 Å3), and open (<300 Å3) (35) (Fig. 1B). As
larger ligands bind, the cavity opens owing to the unwinding of
helix F from an α- to a 3 to 10-helix. In the most voluminous state
of the cavity (twice that of the closed state), it opens to form a
channel between bulk solvent and the hydrophobic cavity. Thus,
despite being a simplified model system, L99A exhibits sub-
stantial structural rearrangements, making it a useful site to test
flexible receptor docking (11, 60).
For this study, we derive conformational state definitions from

apo and holo crystal structures of L99A in its closed, intermediate,
and open state (Fig. 1C). Removing the ligands, we perform aMD
and cMD simulations for exhaustive and efficient sampling. We
then construct a Markov state model (MSM) (61–64) to estimate
the relative probability of each crystallographic conformational
state in the apo ensemble. Converted into a conformational en-
ergy penalty Ep (Eq. 1), we incorporate the state probabilities into
our flexible receptor docking scoring function (4).

Ep = −m · kB ·T · ln(p), [1]

where kB is the Boltzmann constant, T is the temperature in K, P
is the population, and m is the weighting multiplier.
The multiplier m weights the conformational penalty energy to

bring it into balance with the other terms in the DOCK3.7
scoring function, which are typically higher in magnitude than
true ligand-binding energies. As in earlier studies that used crys-
tallographic occupancies to measure populations, this m value may
need to be optimized for each system studied, at least for
DOCK3.7 (4); for scoring functions whose energies are already
aligned with experimental binding energies, this may not be nec-
essary. While this is admittedly a weakness, we test the reliability of
the applied penalties in retrospective screens based on the known
ligands and their property-matched decoys, as we do with the
normal scoring function (see Results). Thus, while this weighting
may change from system to system, doing so fits with the retro-
spective control calculations that are already typical in docking.
Crucially, we evaluate the ability of the approach to predict

ligands with new chemotypes selective for each of the three rele-
vant conformations of the cavity in a prospective docking screen.
We consider the usefulness of this approach to the general
problem of predicting weighted, conformational ensembles of
proteins for docking and ligand discovery.

Results
Thermodynamic Weighting from Apo MD Simulations. We perform
both enhanced (i.e., aMD) (SI Appendix, Fig. S1) and conven-
tional (cMD) simulations to estimate the population of the three
crystallographic states in the apo ensemble (Fig. 2). On the one
hand, we directly derive reweighted populations from clustering
500 ns aMD. This analysis suggests a probability of 0.5% for the
open, 1.4% for the intermediate, and 98% for the closed state
(SI Appendix, Table S2). On the other hand, we assess the sta-
bility of these populations from unbiased cMD simulations. From
extensive structural sampling (7.75 μs), we construct an MSM to
estimate the thermodynamic weight of each crystallographic state
in solution with no ligand present. In addition to providing pop-
ulations of and by extension weights for the states, this analysis
also allows an assessment of the involved kinetics. The MSM
analysis finds four distinct states (S1 to S4), which closely resemble
the three distinct conformations observed in ligand-bound struc-
tures (Fig. 2 and SI Appendix, Figs. S2–S4). States S1 (0.05% of the

Fig. 1. Three conformations of the L99A cavity binding site. (A) Crystal
structures of T4 lysozyme L99A in its apo state show a small, buried, and
entirely apolar cavity. (B) Structures of the protein in complex with ligands of
increasing size show three major conformational states of the binding site:
closed (purple), intermediate (blue), and open (green). (C) Workflow.
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population) and S2 (0.11% of the population) both resemble the
open state, which, for example, occurs in complex with n-hexyl-
benzene (Protein Data Bank [PDB]: 4W59). State S3 (1.09% of
the population) resembles the intermediate conformational state,
as found in the complex with n-butyl-benzene (PDB: 4W56). The
closed conformation, which is found for most apo structures or in
the complex with benzene (PDB: 4W52), is modeled by state S4
(98.76% of the population). Encouragingly, we thus obtain state
populations within the same order of magnitude from the
reweighted aMD ensemble and the unbiased simulations.
The kinetic information provided by the MSM is not required

to perform flexible receptor-docking calculations. Nevertheless,
this analysis highlights that the structurally highly similar closed
and intermediate state have fast transition time scales, consistent
with experimental spectroscopy (57, 65) and the ability to soak
ligands into apparently closed cavities in crystals. Expanding the
closed conformation toward the intermediate state is observed
with a mean first passage time (mfpt) of 106 ns. Observing a full
opening of the cavity, however, takes an order of magnitude
longer in simulation time, with mfpts of 1,555 to 8,474 ns.

Retrospective Testing of MD-Based Penalties. We converted these
populations into an energy penalty term using Eq. 1 (4). To test
the benefits and shortcoming of flexible receptor docking and
MD-based penalties, we docked 68 known ligands into the three
conformational states of the binding site. We then calculated the

log-adjusted enrichment of the known ligand over property-
matched decoys (66), docking to each receptor state individu-
ally (standard dock—Fig. 2 C and E) and using all three states
combined with and without the energy penalty (flexible receptor
docking—Fig. 2 D and E). Previously (4, 10), we find that the
enrichment of known ligands over decoys depends on the re-
ceptor conformational state. Docking to the higher-energy open
state without a conformational penalty enables many decoy mol-
ecules to be accommodated and, moreover, to score better than
known ligands that bind to the smaller closed and intermediate
states. Accordingly, docking against all three states without an
energy penalty (Fig. 2D, red curve) led to poor overall enrichment
of known ligands over property-matched decoys and domination
by the higher-energy open state (Fig. 2E and SI Appendix, Fig. S5).
Including a penalty term calculated directly from the MD slightly
improves enrichment in the retrospective docking. When we weigh
this MD penalty term to bring it into line with the magnitude of
the other energy terms in the DOCK3.7 scoring function, as
similarly done in previous studies (4), ligand enrichment improves
substantially, and the distribution of molecules docked to each
conformational state becomes more balanced (less dominated by
the open conformation). We note that even weighted, the en-
richment from docking against the multiple receptor conformation
(Fig. 2D, gold curve) does not exceed that from docking against
the single closed conformation (Fig. 2C, blue curve). This reflects
the bias of the past, however, as most ligands known for the L99A

Fig. 2. Retrospective docking with MD-based weightings. (A) Conformational space covered with aMD and the seeded cMD simulations as a projection onto
the combined principal component analysis space; representative crystal structures of the closed (4W52, purple), intermediate (4W55, blue), and open (4W59,
green) state are depicted as circles. (B) The MSM built from the unbiased cMD trajectories identifies four states (S1 to S4); S1 and S2 both represent the open
state, S3 the intermediate, and S4 the closed state of L99A. Adjusted log receiver operating characteristic (ROC) curves from standard docking (C) to individual
conformational states (purple: closed, blue: intermediate, and green: open) and flexible receptor docking (D) with varying weighting multipliers m. (E)
Adjusted areas under the log ROC curves quantifying the enrichment of known ligands against decoys for classic and flexible docking screens with and
without penalties.
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cavity bind to the closed conformation of the receptor. Including
the alternate higher-energy conformations of the receptor, without
having them dominate, enables the discovery of newer molecules
that bind to these more open states.
In addition to its accuracy in identifying known ligands, we test

whether the approach can reproduce the crystallographic state
occupancies. We calculate the conformational preferences from
the docking score of seven ligands, as described previously (4).
Applying a weighting multiplier of m = 2.5 to the energy penalty
term, we find a Pearson correlation coefficient of 0.93 between
experimental and predicted conformational preferences (SI Ap-
pendix, Fig. S6). Based on ligand enrichment and the correlation
between crystallographic occupancies and predicted conforma-
tional preferences, we proceeded with prospective prediction
using the optimized value of m = 2.5.

Prospective Screening to Identify Binders for Each Conformational
State. Encouraged by the retrospective performance, we applied
the energy penalties in a prospective screen of a library of over
900,000 purchasable molecules from the ZINC database. From
among the top ranking 0.25% of these docked molecules, we se-
lected 33 molecules for experimental testing, choosing the same
number of compounds for each conformational state of the cavity
(closed, intermediate, and open). In addition to being high
ranking—which concentrated the molecules under consideration
among the top 99.75%—we applied a typical “hit-picking” criteria
(67), insisting that they not be conformationally strained nor bear
high-energy tautomers, features that the method can miss. We also
biased toward molecules that were topologically at once diverse and
unrelated to previously known ligands (Table 1, Tanimoto column).
Each of the prioritized molecules was measured for binding by

temperature of melting upshift using a SYPRO orange binding
assay (Materials and Methods). Of these 33, 10 increased the Tm
of melting of L99A by between 0.9 and 5.5 °C when tested at
100 μM (P values ranging from <0.01 to 0.0001 versus DMSO
control; without a crystal structure, a molecule had to have a Tm
upshift >0.9 to be considered a ligand) (Fig. 3). In addition to the
change in melting temperatures, we also determined crystal

structures of 13 compounds bound to L99A; any molecule for
which a cocomplexed crystal structure could be determined was
considered a ligand. Taking together that both change in melting
temperature and crystal structures, we consider 18 molecules to
be L99A ligands, a docking hit rate of 55%, with seven confirmed
by both X-ray structure determination and Tm upshift assay, five
confirmed by Tm upshift assay alone, and six confirmed by X-ray
structure alone (in total 18 confirmed of 33 predicted, Table 1).
We note that as ligands for a designed cavity in lysozyme, one
distant from the active site, none are expected to substantially
modulate enzyme activity, c.f. SI Appendix, Fig. S7. If one were to
only consider the 13 crystallographically confirmed molecules as
ligands, the hit rate would be 39% (Fig. 4). On a state-by-state
basis, 8 of 11 molecules predicted for the closed conformation
were confirmed experimentally and 7 of 11 molecules predicted
for the intermediate conformation were confirmed experimen-
tally, while for molecules predicted for the open state, which is
more challenging because so many more ligands can fit it, 3 of 11
were confirmed to bind (Figs. 3 and 4).
For 13 of these ligands, we determined that X-ray crystal

structures bound to L99A (Table 1 and SI Appendix, Fig. S8 and
Table S3). Crystals diffracted from 0.99- to 1.5-Å resolution. In
all 13 of the crystal structures, we can see the unrefined differ-
ence electron density maps (Fo-Fc) clearly defining both ligand
positions and that of the F-helix, whose opening defines the
three conformational states of the cavity. Crystals diffracted from
0.99- to 1.5-Å resolution. In all 13 of the crystal structures, we
can see the unrefined difference electron density maps (Fo-Fc)
clearly defining both ligand positions and that of the F-helix,
whose opening defines the three conformational states of the
cavity (SI Appendix, Fig. S8). The quality of these observations
made us confident on our ability to predict these structures. Of
the five closed state structures, four (PDB: 7LOB, 7LOC, 7LOA,
and 7LOD) also had the alternate electron density for the in-
termediate state in the F-helix, thus both intermediate and
closed conformation existed in the same structures with the
dominant conformation being closed. For PDB 7LOB, the closed
cavity conformation occupied 77% of the observed electron
density, while the rest was modeled as intermediate. The per-
centage of closed cavity conformation for the other three closed
state structures with PDB ID’s 7LOC, 7LOA, and 7LOD were
56, 71, and 63%, respectively. The only intermediate structure
that also had an alternate conformation for closed state included
PDB ID 7LOG, with 92% of the conformation being interme-
diate and the rest modeled as closed state. Alternate confor-
mational states with less than 8% occupancy were not modeled
in the crystal structures. Encouragingly, the docked poses of the
predicted ligands closely resembled the crystallographic geome-
tries, with rmsds ranging from 0.42 to 2.3 Å and a mean rmsd of
0.90 Å (Fig. 4). Crucially, all ligands but one (compound 5)
bound to the conformational state for which it had been pre-
dicted in the weighted-ensemble docking (Table 1). Thus, ligands
predicted to bind to the closed state, compounds 1 through 4,
were observed to bind to that state; the seven ligands predicted
to bind to the intermediate state, compounds 9 through 13,
bound to it; and the three ligands predicted to bind to the open
state, compounds 16, 17, and 19, bound to it. Only compound 5,
which was predicted to bind to the closed state, was found to
bind to the intermediate state. For all of these complexes, there
was little ambiguity in making these state assignments—in the
four closed state structures, the F-helix adopted a classic
α-helical geometry, with residues V111 and A112 adopting a
“down” conformation into the site, and no pathway between the
cavity and bulk solvent—the ligands were completely enclosed by
the residues defining the cavity. For the six intermediate state
structures, residues T109 to G113 shift “upwards,” with Val111
rotating about its χ1 angle, enlarging the cavity. Finally, in all
three open state structures, the F-helix adopts a 3 to 10 helix, and

Fig. 3. Tm upshift experiments with DSF. In a thermal shift assay (DSF), 10
ligands were identified as binders. Five of these were predicted to bind to
the closed state (purple), two to the intermediate state (blue), and three to
the open state (green). The previously known binder ethylbenzene is shown
as positive control in gray.
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a clear channel opens up to solvent, which the docked ligands
exploit. Whereas the docking hit rate for this state was relatively
low, all three ligands bound in geometries that corresponded to
the docking predictions (Fig. 4 L–N). Clearly, the driving force
for binding in the closed, intermediate, and open states was
sterics, but in the open state, there is also a role for the orien-
tation of polar groups, which typically interacted with the back-
bone of residue G107 in the unwound F-helix and also with bulk

solvent. Encouragingly, these interactions were captured in the
docking (Fig. 4).

Discussion
Three key results emerge from this study. First, MD simulations,
including aMD, can access and energy weight alternative confor-
mational states of binding sites; second, these weighted confor-
mations substantially improve docking hit rates versus unweighted

Table 1. Summary of newly identified L99A binders based on Tm upshift and X-ray crystallography
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states; and third, the docking hits predicted for each state actually
bind to those states. Using MD—and, indeed, other methods, such
as simply relying on experimental observables—to access and
weight protein conformations for docking has confronted two
problems: accessing the correct states and weighting them by

energy. In previous work, even when states are sampled correctly,
docking can be biased by those states that best fit ligands, which
are often those that are higher in energy. These high-energy states,
thus, act as decoys, crowding out more favorable solutions.
Drawing on experimental observables, several studies have shown

Fig. 4. Predicted and experimental ligand poses and site conformations. (A) Closed (violet), intermediate (blue), and open (green) conformation of the L99A
cavity site—characterized by a shift of the F-helix residues T109 to A112. (B–N) Superposition of predicted (orange) and crystallographic (white) ligand poses
for crystals structures 7LOB, 7LOC, 7LOA, 7LOD, 7LX8, 7LX9, 7LOG, 7LOF, 7LOE, 7LXA, 7LX7, 7LX6, and 7LOJ, respectively.
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that when states are properly weighted by conformational ener-
gies, docking results improve (4, 11). However, depending only on
experimental observables, such as multiple state occupancies, re-
stricts this approach to the relatively few targets that afford such
high-quality observables. Thus, a crucial result of this study is that
both cMD and, encouragingly, also aMD can both sample ex-
perimentally accessible states and usefully weigh them (Fig. 2A).
Tested retrospectively in the model cavity site L99A, docking hits
are dominated by the highest-energy open conformation of the
site, which is the one that can accommodate the largest ligands.
With the aMD-derived population weights applied, retrospective
hit rates improve substantially (Fig. 2 C–E). More compellingly, in
prospective screens, a high 55% hit rate is found for new ligands,
topologically different from those previously known (Table 1). The
ability to readily determine structures with L99A allowed us to
interrogate these new ligands at atomic resolution. For 12 out
of 13 structures determined, each new ligand was predicted to
be bound to the conformational state in which it was observed
(Fig. 4).
Besides its high sampling efficiency compared to cMD, an

advantage of the aMD approach is its pathway independence
(68). In aMD, no prior knowledge of a system’s free energy
landscape needs to be incorporated, for instance, in the form of a
reaction coordinate or a collective variable. Instead, the required
parameters can be derived from energetic averages of short cMD
simulations. The workflow we present can thus be applied to any
system of interest. Here, we focus on benchmarking the reli-
ability of aMD-derived energy weights, which we then apply on
experimental holo structures. However, especially when ex-
haustive sampling can be achieved, it has been shown that MD
simulations can also suggest and refine protein binding site
conformations for ligand discovery, even those that have not
been observed before or were not well defined (10, 26). Selecting
single structures from thousands of snapshots visited within MD
trajectories is a tedious and typically ambiguous challenge. The
kinetic clustering and coarse graining embedded in a typical
MSM workflow represents a most robust and straight-forward
approach to this problem. In summary, aMD can provide a sam-
pling speedup of three orders of magnitude versus cMD simula-
tions (29, 69), but the cMD-based MSM workflow provides more
accurate estimations of state probabilities. The combination of
enhanced and cMD simulations (Fig. 1 A and B) may be an effi-
cient method for extensive phase space exploration, with ultimately
unbiased transition rates, and thus may offer reliable energetic
weightings for the sampled states. Similar simulation strategies,
differing in the initial step of assuring exhaustive sampling, have
been applied to a broad range of biomolecular systems, such as the
miniproteins WW domain and NTL9 (70), beta-lactamase (10),
allergen proteins (71, 72), serine proteases (24, 73), antibodies (74),
and proteins central to SARS-CoV-2 evasion (25, 26). This work-
flow should thus be transferrable to most biomolecular system.
The energy weights, which we derived from the aMD simu-

lations, substantially improved our docking hit rates, both for
retrospective and prospective screens. We find that the energetic
penalty term is crucial, in particular, for the high-energy open
state. Without accounting for the energetic cost of the cavity
opening, large decoy molecules dominate the top ranks of the
retrospective docking (Fig. 2D). Larger ligands are inherently fa-
vored by the docking scoring function, for this and for other sites,
simply because they can make more interactions. Incorporating
energy weights helps balance the ligands and states among the top-
ranked molecules. While similar observations have been made
based on high-quality experimental weighting, an advantage of the
MD approaches investigated here is that they should be applicable
to the majority of targets for which such weighted states are not
available directly from experimental observables.
Encouragingly, predicted and experimental binding site confor-

mations corresponded well. For 12 of 13 ligand-bound structures,

the flexible receptor docking predicted the correct dominant re-
ceptor conformation. This is most compelling for the open state, in
which the site doubles in volume and opens it to the bulk solvent,
making it substantially more complicated in terms of its potential
interactions and biophysics. The three molecules that bind to this
conformation, compounds 16 through 18, include polar groups,
such as a phenolic hydroxyl, a triazole, and an amine (Fig. 4 L–N),
which hydrogen bond with the backbone of G107 in the F-helix, a
group previously unavailable to them in the closed and interme-
diate conformations. In the open state, these groups are also open
to bulk solvent, which likely has a role in reducing the desolvation
penalty they would otherwise pay. Balanced against the ability to
predict this state for these ligands, and to predict the ligand-bound
geometries with high fidelity, was the relatively low hit rate for
molecules predicted to bind to the open state. This at least partly
reflects the loss of the steric constraint that effectively separates
ligands from many larger nonbinders in the much smaller closed
and intermediate cavity conformations—in the open state, the
L99A “cavity” begins to reflect the more open sites typical of drug
targets, as do its docking hit rates (3 of the 11). Likely also con-
tributing was the relatively low solubility of the larger mole-
cules versus smaller ligands for a site whose maximal affinity is
close to 10−4 M.
Certain limitations of this study merit airing. While we believe

that aMD can be used to not only weigh but to sample relevant
conformations, we relied on crystallographically defined con-
formational states, for which we calculated MD-based proba-
bilities. Until this is demonstrated prospectively, a substantial
undertaking, the generalizability of this approach will remain
tentative. Correspondingly, while we achieved relatively ex-
haustive sampling for L99A, for larger and more complex drug
targets, this will be more challenging. And just when sufficient
sampling is achieved, remains one of the general challenges with
MD simulations. It may be that, for the foreseeable future,
reaching full convergence for a large biomolecular system may be
unfeasible; still, local convergence, for instance for motions within
a specific binding site, may be reachable. We do note that MSM-
based workflows have shown promise in ligand discovery by esti-
mating the uncertainty of such local equilibria (10). Naturally, our
study was conducted in a model system that intentionally sim-
plifies the problem, eliminating many challenges typically faced in
docking (e.g., a usually heterogenous recognition surface, partly
exposed to solvent, is radically simplified). The hit rates experi-
enced here, and the sampling challenges, will be increased in more
complicated, drug-relevant binding sites. By the same standard,
the simplifications afforded by L99A, like all model systems,
allowed us to focus on the challenge at hand, sampling and in-
cluding multiple protein conformations. Finally, we note that
though the overall hit rate for the docking was high, at 55%, the
hit rate for the more challenging open cavity, though not disrep-
utable at 27%, was substantially lower, reflecting the challenges
emerging as one moves from an enclosed cavity to the more
typical binding sites. The lower hit rate reflects well-known
problems with docking, we believe, not really challenges attend-
ing the weighted ensemble approach; all but one of the ligands
predicted, after all, bound in the states to which they were docked.
These caveats should not distract from the central observa-

tions of this study—MD simulations, including the resource-
efficient aMD, can sample relevant states and usefully energy-
weight them. The resulting energy penalties, incorporated into
multiconformer receptor docking, allow one to access a much
broader range of chemotypes without being dominated by high-
energy structures. The approach has the promise of generality
and potentially may be applied to the vast number of systems in
which such states are unavailable from experimental data but are
likely to play a key role in the success of large library-docking
screens.
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Materials and Methods
MD Simulation Setup and Analysis. Structures, coordinates, and topologies for
the MD simulations were prepared using modules implemented in AMBER14
(75). The analysis was performed using in-house python scripts, cpptraj (76),
and PyEMMA 2.5.7 (77). Further details are available in SI Appendix.

Flexible Receptor Docking. All library screens were performed using the
flexible, receptor-docking protocol, scripts, and programs implemented in
DOCK3.7 (78). A detailed description is included in SI Appendix.

Protein Purification. L99A was cloned, as previously described (35). Briefly,
pET-29 plasmid (EMD Biosciences) containing the gene L99A T4 lysozyme
gene was transformed into Escherichia coli BL21(DE3) cells. The C-terminally
hexa-histidine–tagged L99A T4 lysozyme was expressed in BL21 cells for 4 h,
following induction with 0.5 mM IPTG overnight at 18 °C in presence of
kanamycin. Cells were harvested by centrifugation at 4,000 rpm for 20 min
followed by resuspension of cells in lysis buffer containing 20 mM Hepes pH
6.8, 10 mM imidazole, and 5 mM β-mercaptoethanol and lysed using a
sonicator. Following lysis, the His-tagged protein was bound to Ni-NTA
agarose and subjected to wash with buffer containing 20 mM Hepes pH
6.8, 20 mM imidazole, and 5 mM β-mercaptoethanol. Finally, the protein was
eluted using elute buffer containing 20 mM Hepes pH 6.8, 250 mM imid-
azole, and 5 mM β-mercaptoethanol. The eluted protein was dialyzed in
200 mM KCl, 5 mM β-mercaptoethanol, and 50 mM phosphate buffer pH 6.6
and concentrated to 20 mg/mL before flash freezing in liquid nitrogen to
store the protein at −80 °C.

Differential Scanning Fluorimetry. L99A was incubated with SYPRO orange
dye (Thermo Fisher Scientific, S6650) in a 384-well PCR microplate (VWR,
10011–194), with a final volume of 15 μL per well, including 2.5 μM T4 Lys
and 2.5× SYPRO dye in 50 mM KPi, pH 6.5. The temperature was ramped
from 30 to 95 °C at a rate of 1 °C/min and fluorescence of the dye monitored
by qPCR machine. Melting temperatures were determined by the Life Cycler
Thermal Shift Analysis software. L99A was mixed with a final 100-μM con-
centration of small molecules prior to differential scanning fluorimetry
(DSF). The difference in the melting temperature was calculated for each
small molecule–L99A mixture.

Protein Crystallization. Crystals for L99Awere set at a protein concentration of
10 mg/mL using vapor diffusion hanging drop method. Crystals grew over-
night at 20 °C in buffer containing 0.1 M Tris pH 8.0, 22% PEG, 4% iso-
propanol, 50 mM BME, and 50 mM 2-hydroxyethyl disulfide. Ligands were
soaked in the crystals, and crystals were left overnight at 20 °C before cry-
ocooling them in 25% ethylene glycol for data collection.

Structure Determination and Refinement. L99A–ligand datasets were col-
lected at beamline 8.3.1 of the Advanced Light Source (Lawrence Berkeley
Laboratory) with wavelength of 0.95386 and a temperature of 100 K. All
datasets belonged to P32221, with one molecule in the asymmetric unit. The
datasets were processed, scaled, and merged using XDS and AIMLESS.
MOLREP was used for molecular replacement using the protein model from
PDB ID 4W57. The F-helix residues 107 to 115 and ligand were removed from
PDB ID 4W57 during molecular replacement, giving unbiased electron
density for the ligands and F-helix in the initial electron density maps. Ge-
ometry restraints of ligands were created in eLBOW-PHENIX. Initial model
fitting and addition of waters was done in COOT (79) followed by refine-
ment in REFMAC (80). Following modeling of the ligand in COOT, several
rounds of refinement were carried out using PHENIX. For each structure,
geometry was assessed using Molprobity and PHENIX polygon. Structures
were not compared until the completion of the refinement for each ligand
to prevent the biasing of refinement of different states of lysozyme. Data-
sets have been deposited to the PDB as 7LOA, 7LOB, 7LOC, 7LOD, 7LOE,
7LOF, 7LOG, 7LOJ, 7LXA, 7LX6. 7LX7, 7LX8, and 7LX9.

Data Availability. All crystallographic structures have been deposited to the
PDB as 7LOA, 7LOB, 7LOC, 7LOD, 7LOE, 7LOF, 7LOG, 7LOJ, 7LXA, 7LX6, 7LX7,
7LX8, and 7LX9. All other study data are included in the article and/or
SI Appendix.
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