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ABSTRACT: While small molecule internal strain is crucial to
molecular docking, using it in evaluating ligand scores has
remained elusive. Here, we investigate a technique that calculates
strain using relative torsional populations in the Cambridge
Structural Database, enabling fast precalculation of these energies.
In retrospective studies of large docking screens of the dopamine
D4 receptor and of AmpC β-lactamase, where close to 600 docking
hits were tested experimentally, including such strain energies
improved hit rates by preferentially reducing the ranks of strained
high-scoring decoy molecules. In a 40-target subset of the DUD-E
benchmark, we found two thresholds that usefully distinguished between ligands and decoys: one based on the total strain energy of
the small molecules and another based on the maximum strain allowed for any given torsion within them. Using these criteria, about
75% of the benchmark targets had improved enrichment after strain filtering. Relying on precalculated population distributions, this
approach is rapid, taking less than 0.04 s to evaluate a conformation on a standard core, making it pragmatic for precalculating strain
in even ultralarge libraries. Since it is scoring function agnostic, it may be useful to multiple docking approaches; it is openly available
at http://tldr.docking.org.

■ INTRODUCTION

In large library docking screens, hundreds of millions to
billions of molecules, each in multiple conformations, are
sampled for complementarity to a protein binding site. While
low-energy conformations predominate,1,2 inevitably some
high-energy conformations are sampled. In a foundational
study, Tirado-Rives and Jorgensen showed that it was often
possible to find high-energy conformations of small molecules
in docking and that the relative energies of these
conformations were difficult to rank, even with fairly high-
level quantum mechanics (QM).3 The authors concluded that
there were inherent errors in dockinghere from ligand strain
but also from other terms that were outside the limits of
binding affinity ranges, docking was likely to sample among its
hits (from mM to mid-nM or about 6 kcal/mol). This made
accurate rank ordering in docking unlikely, in general, and, in
particular, made the improvement of docking scores by the
addition of higher-order terms, here ligand strain, problematic.
While docking will remain, for the foreseeable future, a

method that cannot reliably rank-order molecules from a large
library screen, we wondered if ligand strain could nevertheless
improve docking in one of its primary goals: as a categorizing
technique that separates a small fraction of plausible new
ligands from a much larger library of molecules unlikely to
bind.4−7 High-ranking docked molecules can adopt strained
conformations, typically owing to high-energy torsion angles.
Ideally, such strained conformations should not be sampled,
but the need to explore many conformations to achieve
favorable fits, combined with necessarily approximate con-

formational energies and the screening of large, diverse
libraries, has often meant that such strained conformations
are in fact modeled. Perversely, these strained conformations
can often score better in a protein site than a lower energy,
unstrained conformation.8 This, in turn, can crowd out
unstrained, more favorable molecules, lowering the ability of
docking to separate true ligands from false positives. Were such
strained conformations removed, it would improve docking hit
rates, even if including strain, per se, in the energy score might
not measurably improve rank ordering by affinity, as argued by
Tirado-Rives and Jorgensen.
Unfortunately, few methods for calculating conformational

energies now meet the demands of large library docking, where
hundreds of millions to billions of molecules must be
assessed,9−11 and several hundred thousands must be evaluated
even after the initial docking campaign has completed
(postfiltering). The current approaches for strain energy
assessment can be organized into three groups: quantum
mechanical (QM), molecular mechanics (MM), and database-
torsional methods. In ab initio calculations,12−15 torsional
energies are calculated using one of several QM basis sets. For
example, Rai et al. generated torsion scan profiles of neutral
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fragments using density functional theory (DFT) (B3LYP).16

Based on the QM calculations at discrete torsion angles, they
interpolated the values into a continuous function to estimate
the torsion strain energy. This is not yet feasible at scale, and
so the method was converted into a semi-knowledge-based
approach. Even so, the method still demands ab initio
calculation of torsional terms for many new molecules and
remains time consuming. In molecular mechanics17 ap-
proaches, force fields including OPLS, CHARMM, and
AMBER18−22 are used to calculate small molecule strain
energies; this can often demand the calculation of new
parameters, especially for large and diverse docking libraries.
Molecular mechanics methods are less accurate than QM
methods since they involve further approximation in the
energy equations (for example, in assigning static partial
charges to the molecules).15,23 This lack of accuracy is
balanced by its much higher speed. Even so, it is unclear
that it is suited to the scale of the new ultralarge docking
libraries.9−11 A third approach leverages databases of small
molecule crystal structures to predict torsion strain using
populations of observed angles.24,25 Predecessors to these
studies are the MIMUMBA and Mogul systems,26,27 and in a
recent study, Groom and colleagues systematically inferred
torsion-based ligand strain from the Cambridge Structure
Database (CSD)28 and also from the Protein Data Bank
(PDB).29 They compiled histograms of observed dihedral
angles for each torsion pattern (the sequence of four atoms
defining the dihedral angle, encoded in the SMARTS
format).30 The torsion patterns were organized hierarchically
so that a user can match each torsion pattern in a molecule to
the patterns compiled with increasing specificity. They also
developed TorsionAnalyzer, which is an interactive graphical
tool for strain energy analysis.31

Here, we used this statistical approach to address ligand
strain energy in docking, focusing exclusively on terms derived
from the CSD, which are more accurate. Based on histograms
of each torsion pattern, we calculated the torsion energy using
a canonical ensemble approach. We converted counts observed
in the data sets for different angle measurements for each
torsion pattern into torsion energy units (TEUs). Since we had
a filtering strategy in mind, where torsional strain would be
either acceptable or unacceptable but would not be added to a
docking score per se, it was unimportant how these TEUs
related to docking energies; the two would not be merged.
With all counts in the same energy scale, we can compare and
add conformational strain energy across different torsion
patterns for the entire molecule. We then use the total
torsional energy of the molecule, and the maximum individual
torsional energy within that molecule, to evaluate the strain of
a molecule’s conformation. To determine a threshold for
applications, we studied two targets with extensive exper-
imental measurements of docking-predicted ligands and also
40 systems from the DUD-E benchmark. We find that at
certain thresholds, when used as a filter to remove strained
molecules, this method can improve docking hit rates, at least
retrospectively. The software is relatively fast, capable of
calculating strain for half a million molecules on a small cluster
in less than 10 minutes, and is mechanically reliable (few
molecules fail to return an energy), both of which make it
suitable for large library applications. It is openly available to
the community at http://tldr.docking.org.

■ METHODS

Torsion Library Generation. We represent every
sequence of four atoms defining a dihedral angle by a torsion
pattern using the SMARTS line notation.30 We adapted the
torsion library of Rarey et al.24,25 to build our own library,
which has 514 torsion patterns with the same hierarchical
organization as the original. Each torsion pattern has a
histogram of the observed counts for each possible dihedral
angle measurement in the CSD and PDB. For each torsion
pattern’s histogram, if the total count is less than 100, we use
an approximate approach. The original torsion library allows
“tolerances” about each peak in the histogram, where the
observed frequency drops below a certain value. Our
approximate approach flags any degree difference between a
conformation’s dihedral angle and the histogram’s peak that is
larger than the maximum tolerance in the original library. If the
total count is larger than 100, we convert the histogram
frequencies into torsion energy units (TEUs) by applying the
Boltzmann equation (Figure S1), which we term the “exact
approach”. To avoid infinite energies from zero counts in the
histograms, we add the minimum positive count from each
histogram to any zero counts. We assume that the original
measurements from the CSD and PDB exist in a canonical
ensemble at 298 K, meaning the temperature of the
hypothetical ensemble is a tunable parameter in creating the
strain energy library. We therefore use TEU instead of kcal/
mol to reflect the fact that our energy scale is artificial and
based on the databases’ sampling of the hypothetical ensemble.
We modeled this unit on Rosetta’s use of Rosetta energy units
in its scoring function for protein structure conformational
energy.32,33

Workflow of the Software. The current version can
handle two types of input files: mol2 and db2 (a format for
DOCK3.7).34 With the energy profile for each torsion pattern
precalculated in the library, we only need to look up the energy
estimates for the torsion patterns present in the molecule and
not calculate them from scratch. Using the Chem submodule
in the Python module RDKit,35 we find all of the torsion
patterns present in the molecule based on their SMARTS
patterns, calculate their dihedral angles, and then extract the
relevant energy estimates from the torsion library. We keep the
information matching the most specific (least general) torsion
pattern in the library’s hierarchy. Then, we can sum the energy
estimates for all of the torsion patterns to get the estimate for
the molecule’s conformation or simply find the torsion patterns
with energy estimates above the desired cutoff (Figure 1).

DUD-E Benchmark Docking. The full list of DUD-E
systems and the corresponding PDB IDs used are listed in
Table S1. For docking, the crystallographic ligands were used
to generate matching spheres for each target. To prepare the
protein in docking, we precalculated energy grids for an
AMBER-based van der Waals potential,36 a Poisson−
Boltzmann electrostatic potential, using QNIFFT,37,38 and
for ligand desolvation using an adapted generalized-Born
approach.39 We used DOCK3.734 to dock all of the hits and
decoys for each DUD-E target.

Quantum Mechanical Calculation of Strain. For 20
representative dihedrals, we calculated the strain at the 6-
31G** basis set level using the B3LYP-D3 method in Jaguar
(Schrodinger, New York). For each torsion, we compared the
QM-calculated strain energy to that calculated by the
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population-based method at angles of both 30 and 60° off the
minimum.

■ RESULTS

D4 Dopamine Receptor Case Study. We began by
investigating the effects of ligand strain on the experimental
results of a large library docking campaign against the D4
dopamine receptor.9 Here, 549 docking-ranked compounds,
across a wide range of ranks, were tested in the same assay in
the same lab, providing an unusually large set of comparable
experiments for a diverse set of compounds. We collected 256
of these molecules that had high DOCK3.7 ranks, with scores
less (better) than −60 kcal/mol.9 Of these, 62 were found
experimentally to bind, with EC50 values ranging from 6 μM to
180 pM, while the other 194 were docking decoys (i.e., high-
ranking molecules that did not bind on experimental testing).
In the calculation that led to these molecules, no strain energy
filter was applied. We can calculate the torsion-based ligand
strain for each of these experimental binders and nonbinders,
comparing the docked conformation of the molecules to that
of their ground state (by torsion strain) (Table S2). If it is true
that the decoys tend to be more strained than the binders, then
applying a strain filter should remove more of the experimental
nonbinders than the true binders and correspondingly, the hit
rates, the number-active/number-tested, should increase.
These values can be calculated at different strain thresholds
(Figure 2). Here, “total” refers to the total strain energy of a
compound, adding up all torsions, while “single” means the
maximum strain energy of any individual torsion within the
molecule. We deem a molecule’s docked pose “strained” if its
total or maximum individual torsion strain is greater than the
threshold.
A satisfactory strain energy correction should maximize the

hit rate of nonstrained compounds while minimizing that of
the strained ones. The hit rate of nonstrained compounds may
be calculated as the number of true positives (true ligands
correctly labeled as nonstrained) divided by the total number
of nonstrained compounds, while the hit rate of strained
compounds is the number of false negatives (true ligands

Figure 1. Flowchart for strain energy filtering. The program first
locates each torsion pattern in the molecule and calculates its dihedral
angle. It then matches each torsion pattern in the molecule with the
patterns in the torsion library. There will be multiple such matches
since the torsion library contains a hierarchy of patterns. For each
match, the program calculates the energy for the observed dihedral
angle and determines any flags. For each torsion pattern in the
molecule, it keeps only the information from the most specific torsion
pattern rule from the library. Ultimately, the program reports the
estimated energy for each torsion pattern, the sum for all of the
patterns in the molecule, and any flagged patterns.

Figure 2. D4 receptor hit rates of strained (blue) and nonstrained (green) compounds at different thresholds, measured in TEU. For the total
energy category, 6.0 TEU appears to be a good threshold. For the maximum single energy category, 1.8 TEU appears to be a good choice.
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wrongly labeled as strained) divided by the total number of
strained compounds. In the case study of the D4 receptor, we
maximize the difference in hit rates using a total strain energy
threshold of 6.0 TEU and a maximum single strain energy
threshold of 1.8 TEU.
Inspection of the compounds filtered out or retained affords

insight into this process (Figure 3). High-ranking decoys like
ZINC000067715288 and ZINC000666614106 break planarity
about an amide bond, with an angle of about 30° or more,
imparting single energy strains of 4.0 and 5.6 TEUs,
respectively, and total strains of 10.4 and 5.8 TEUs,
respectively. Molecules like ZINC000377646411 and
ZINC000248536951 have strained torsions that break
conjugation of an exocyclic group with an aromatic ring.
These strained torsions allow these molecules to make
favorable interactions with the receptor that they otherwise
could not (Figure 3). Conversely, for high-ranking binders like

ZINC000480496068 and ZINC000155719879, their torsional
violations never exceed 1.2 TEUs for any single angle nor do
they add up to more than 4.2 in total.
We looked at the effects of strain energy filtering on the

docking-prioritized D4 receptor compounds, and on the true
ligands that emerged from them, using a total strain of 6.0
TEU and a maximum single strain of 1.8 TEU (Table 1).
Using the total strain filter alone (columns 3 and 4), the hit
rates of strained and nonstrained compounds, i.e., above and
below our threshold, are 0.109 and 0.271, respectively. A two-
sample proportion Z-test indicates that this difference is
significant (p-value 0.010). Using the maximum single strain
filter (columns 5 and 6), the hit rates of strained and
nonstrained compounds are 0.181 and 0.327, respectively,
which is also a significant difference (p-value 0.004). The p-
value for the hit rate comparison with and without the
maximum single strain filter (columns 6 and 2) is 0.048, which

Figure 3. Docking poses of strained decoys (top four) and unstrained binders (bottom two) in DRD4. Two-dimensional (2D) images of the
molecules are also shown. The strained torsions are indicated in cyan and labeled with their degrees out of optimum.

Table 1. DRD4 Hit Rates before and after Strain Filtering at Two Chosen Thresholds

all (no
strain
filters)

total
strain ≥6
TEU

unstrained (total
strain <6 TEU)

max single
strain ≥1.8

TEU

unstrained max
single strain <1.8

TEU
total strain ≥6 TEU OR
max single strain ≥1.8 TEU

unstrained (total strain <6 TEU
AND max single strain <1.8 TEU)

number of
hits

62 5 57 27 35 27 35

sample
size

256 46 210 149 107 153 103

hit rate 0.242 0.109 0.271 0.181 0.327 0.176 0.340
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is significant. On the other hand, the p-value for the hit rate
comparison with and without the total strain filter (columns 4
and 2) is 0.236. While this p-value is not significant, an even
more stringent criterion was explored, which is to classify
compounds as strained if they fulfill either of the two
conditions (columns 7 and 8). Under these criteria, the hit
rate of nonstrained compounds was further improved to 0.340.
Although each threshold is the best choice in its category

(with this level of granularity in testing thresholds), the
outcomes are different. At a total strain of 6.0 TEU, only 46
compounds are filtered out vs 149 at a maximum single strain
of 1.8 TEU; the percentage of remaining compounds is 82 vs
42%. This difference suggests that if the investigator prefers to
keep as many hits as possible (conservative in deeming a
molecule “strained”), they should use the total strain threshold.
To maximize stringency, ensuring that most compounds will
be “unstrained”, they should use the maximum single strain
threshold.
Case Study of AmpC β-Lactamase. We applied the same

calculations and analyses on the AmpC β-lactamase data set,
another target for which we have a substantial number of true
actives and experimentally measured decoys from a previous
large-scale docking campaign. Of 44 experimentally tested
molecules with a DOCK score less than −60,9 5 were true
inhibitors (39 were high-ranking decoys) (Table S3 and Figure
4).

As with the D4 case, we maximize the difference in hit rates
between strained and nonstrained molecules for the AmpC
molecules. Here, the maximum difference between the two
comes with a total strain energy threshold of 6.0 TEU and a
maximum single strain energy threshold of 1.7 TEU (Table 2).
Using the total strain energy filter (columns 3 and 4), the hit
rates of strained and nonstrained compounds are 0.000 and
0.135, respectively (i.e., none of the true ligands are found to
be strained). Using the maximum single strain energy filter
(columns 5 and 6), the hit rates of strained and nonstrained
compounds are 0.077 and 0.167, respectively. The two-sample
proportion Z-test failed to show statistical significance for these
differences, as the total sample size of 44 was too small. We
also explored an even more stringent criterion, which is to
classify compounds as strained if they fulfill either of the two
conditions (columns 7 and 8). However, the result did not
improve. Still, overall, we observed similar results for AmpC as
we did for D4. At a total strain of 6.0 TEU, only 7 compounds
are filtered out compared to 26 at a single maximum strain of
1.7 TEU. The percentage of remaining compounds is 84 vs
41%. As we will see, this trend continues when we turn to the
DUD-E benchmarks.
Here too, we can inspect the conformations adopted by the

compounds filtered out by strain (Figure 5). High-ranking
decoys like ZINC000188308020 and ZINC000261754704
break planarity about an amide bond, with an angle of about
30°, imparting single energy strains of 2.1 and 2.1 TEUs,

Figure 4. AmpC hit rates of strained (blue) and nonstrained (green) compounds at different thresholds, measured in TEU. For the total energy
category, 6.0 TEU is a good choice of threshold. For the maximum single energy category, 1.7 TEU is a good choice.

Table 2. AmpC Hit Rates before and after Strain Filtering at Two Chosen Thresholds

all (no
strain
filters)

total
strain ≥6
TEU

unstrained (total
strain <6 TEU)

max single
strain ≥1.7

TEU

unstrained max
single strain <1.7

TEU
total strain ≥6 TEU OR
max single strain ≥1.7 TEU

unstrained (total strain <6 TEU
AND max single strain <1.7 TEU)

number of
hits

5 0 5 2 3 2 3

sample
size

44 7 37 26 18 26 18

hit rate 0.114 0.000 0.135 0.077 0.167 0.077 0.167
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Figure 5. Docking poses of strained decoys (top four) and unstrained binders (bottom two) in AmpC. 2D images of the molecules are also shown.
The strained torsions are indicated in cyan and labeled with their degrees out of optimum.

Figure 6. DUD-E benchmark tests at different thresholds (in TEU). Blue is the average ΔLog AUC and green is the number of positive ΔLog AUC
among 40 systems.
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respectively, and total strains of 6.8 and 6.6 TEUs, respectively.
Molecules like ZINC000317738578 and ZINC000274934818
have strained sulfonamide with nitrogen in a ring. These
strained torsions allow these molecules to make favorable
interactions with the enzyme that they otherwise could not
(Figure 5). Conversely, for high-ranking binders like
ZINC000184991516 and ZINC000547933290, their torsional
violations never exceed 1.7 TEUs for any single angle nor do
they add up to more than 4.5 in total; nevertheless, they make
favorable fits with β-lactamase, comfortably placing a phenolate
in the oxyanion hole and hydrogen bonding with the key
recognition Asn152 of the enzyme.
DUD-E Benchmark Tests. After the case studies of the D4

receptor and AmpC, we investigated the performance against
targets from the DUD-E benchmark.40 Here, the decoys are
not, as in D4 and AmpC, experimentally measured nonbinders
but are based on topological differences from the known
ligands. The DUD-E database is a widely used benchmark to
test docking.40,41 It includes 102 targets with an average of 224
ligands each and 50 property-matched decoys for each ligand.
Compared to AmpC and the D4 receptor, DUD-E targets have
the disadvantage of depending on presumed nonbinders vs the
experimentally determined nonbinders afforded to us by
AmpC and D4. This is balanced by the many DUD-E targets,
spanning a wide range of chemotypes, and their wide use in the
field. In this DUD-E benchmark test, there were in total
3 127 362 torsions, among which 6493 (∼0.2%) were
evaluated by the approximate method.
Accordingly, we docked the ligands and decoys for 40 DUD-

E systems against their targets and calculated the adjusted
Log AUC42 for integrated ligand enrichment before and after
strain filtering (Log AUC measures the area under the
enrichment curve over the database docked, weighting
different order-of-magnitude regions equally, with the range
of 0.1−1% of molecules docked weighted the same as 1−10
and 10−100%, thereby upweighting the high-ranking region;

the method is adjusted by subtracting the Log AUC expected
at random). We used the change in adjusted Log AUC
(ΔLog AUC), the Log AUC after strain filtering minus the
Log AUC before strain filtering, to measure method perform-
ance: a positive ΔLog AUC indicates improvement by filtering
for molecular strain.
We measured the effect of different strain energy filter values

on integrated enrichment on the DUD-E benchmark (Figure
6), with the left Y-axis the ΔLog AUC at different thresholds
(blue bars). As we decrease the value of the strain energy
below which molecules are filtered out (stringency increases),
ΔLog AUC increases. Said another way, as one filters out
compounds with greater and greater stringency (lower and
lower strain energy allowed), enrichment improves. For
instance, filtering out any compound with a total strain greater
than 4 TEU improves ΔLog AUC more than only filtering out
compounds with a total strain greater than 8 TEU. When we
filter on the single largest torsion energy, the effect is less
monotonic, with 1.5 TEU returning the largest ΔLog AUC,
followed by 1.0 and 1.8 TEUs. These effects must be balanced
against the number of compounds remaining after strain
filtering. At thresholds of 1.0 and 1.5 TEUs for the single
torsional strain, the percentage of the total remaining
compounds fall to only 9.6 and 22.1%, respectively (Figure
S2). Accordingly, we preferred a maximum single strain
threshold of 1.8 TEU over 1.0 or 1.5 TEU.
The effect of the strain energy filters may also be evaluated

by the number of systems where integrated enrichment
improved (green bars in Figure 6, right Y-axis, over 40
systems). Here, the trend was almost opposite to that for the
average ΔLog AUCas stringency diminished, the total
number of systems that improved increased (even though
the overall average dropped). Filtering by a total strain energy
at 7.0 and 7.5 TEUs saw the highest number of total systems
showing improvement, with 30 targets overall, 75% of the
systems evaluated, showing improved enrichment. Filtering by

Figure 7. Log AUC before and after strain filtering of 40 systems. Blue is the data before strain filtering. Thirty targets improved at a total strain
threshold of 7.0 TEU (orange), while 27 improved at a maximum single strain threshold of 1.8 TEU (green).
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the single larger torsional energy in the molecules, 28 systems
improved at 1.5 TEU, while filtering at 1.6, 1.7, and 1.8 TEUs
all led to improvements in 27 systems. If we take a total of 7.0
TEU and a maximum single strain of 1.8 TEU as filters, an
average of 71.4 and 37.1% compounds survives these filters,
respectively. This is consistent with what we observed with the
D4 receptor and with AmpC β-lactamase: filtering by total
strain energy retains more compounds, while filtering by single
maximum torsional strain is more stringent. How best to use
and combine these filters may depend on context. In large-
scale docking, for instance, one is often confronted with an
embarrassment of riches, with too many high-scoring
molecules to choose; here, the more stringent maximum single
torsional filter may be the better choice. Strategies that
combine the two criteria may also be imagined.
The results may be broken down by the individual protein in

the 40-target benchmark for simplicity, just using a total strain
of 7.0 and a maximum single torsional strain of 1.8 TEU
(Figure 7). Using the maximum strain filter, 30 targets had
improved Log AUC, while at the maximum single torsional
strain, 27 targets did. For some targets like renin (RENI) and
tryptase β-1 (TRYB1), strain filtering greatly boosted the
Log AUC. The ligands of these targets are usually large with
multiple rotatable bonds. In Figure S3, we plot ΔLog AUC vs
average number of ligand dihedral angles for all of the targets,
observing a positive correlation between the ΔLog AUC and
the number of ligand- and decoy-rotatable bonds.
As with the D4 and AmpC case studies, we can inspect the

conformations adopted by the compounds filtered out by
strain for the DUD-E targets (Figure 8). High-ranking decoys
like C26299839 and C40966046 break planarity about an
amide bond, with an angle of about 30° or more, imparting
single energy strains of 2.1 and 3.4 TEUs, respectively, and
total strains of 8.4 and 9.5 TEUs, respectively. Molecules like
C38700416 and C09344195 have strained torsions that disrupt
conjugation of an extra-cyclic group with an aromatic ring.
These strained torsions allow these molecules to make
favorable interactions with the targets that they otherwise

could not (Figure 8). We note that for several systems, using
either the total strain energy or a maximum value for a single
torsion has different impacts on enrichment, and for several,
both led to reduced enrichments. For proteins binding large,
flexible ligands, like fatty acid binding protein (FABP4) and
HMG-CoA reductase (HMDH), the single torsional filter can
lead to better enrichments than does the total strain energy.
For docking more flexible molecules, the single torsional filter
may be more useful, owing to accumulation of errors as the
numbers of torsions increase. For two kinases, both polo-like
kinase 1 (PLK1) and mitogen-activated kinase (MK01) strain
filters reduced enrichment. For both, a single torsion
accounted for most of the calculated strain ([*:1]∼[CX3:2]!
@[OX2:3]∼[*:4] and [*:1]∼[CX3:2]!@[CX3:3]∼[*:4], re-
spectively). In both cases, the minima populated in the CSD
for each torsion were at 0 and 180°, but the preferred docked
conformation occurred 60° off these minima, imposing large
penalties. The ligands for both targets, however, had large aryl
groups at the end of the torsion, something not found in most
CSD molecules, and when these torsional energies were
calculated quantum-mechanically for the docked molecules,
the minima close to the docked conformation or the energies
were substantially smaller than implied by the CSD
populations. This is a case where the molecules sampled in
the CSD are different enough from those docked, around this
torsion angle, to make the quantum mechanical approach more
accurate when it is applied to the specific molecules in question
(something that, given its calculation costs, see below, seems
currently impractical for large libraries).

Speed and Robustness. To investigate speed and
robustness, we calculated strain energies on three sets of
500 000 compounds each. On a desktop of i5-8400 CPU@
2.80 GHz, 16 GB RAM, and CentOS Linux 7.6.1810, it took
an average of 319 min to calculate the strain energy for the
half-million compounds or less than 0.04 s for each compound.
This is fast enough to be used as a postdocking filter. We
further performed a parallel test on our cluster, splitting the
500 000 compounds into 100 jobs, each with 5000

Figure 8. Docking poses of four strained decoys: C26299839 in FA10, C40966046 in ITAL, C38700416 in ABL1, and C09344195 in HS90A. 2D
images of the molecules are also shown. The strained torsions are indicated in cyan and labeled with their degrees out of optimum.
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compounds. On an Intel Xeon Silver 4210 CPU@2.20 GHz,
the running time of each job ranged from 301 to 463 s, with an
average of 390. With even a small cluster of 100 cores, this
strain energy calculation can be conducted for half-million
molecules in 8 min. While this project has focused on using
strain as a filter for docking results at the end of a large library
campaign, the speed of this calculation suggests that it may be
possible to use for library generation, even for the >1 billion
molecule ultralarge libraries. Speaking of robustness, in the
three tests, the failure rate was <5 per million compounds;
almost all of the provided compounds could be properly
processed. The ones that failed are usually compounds without
any dihedrals, like benzopyrene.
Comparison to Quantum Mechanics Calculated

Strain. To compare the population-based method with a
quantum mechanical (QM)-based evaluation of torsional
strain, we calculated the strain in 20 representative dihedrals
at torsion angles of both 30 and 60° off the minimum (see the
Methods section). In the case of certain apparently strained
torsions in PLK1 and MK01 inhibitors, the strain was also
calculated by QM (see above). Among the 40 energies for the
representative dihedrals, the QM strain energy and the
population-based one were positively correlated, with an R2

of 0.56 (Figure S4). The slope of 0.22 kcal/mol suggests that
the energies in the gas phase in which the QM calculations are
undertaken are substantially higher than those observed in the
condensed phase of the small molecule crystals in which the
populations are observed. We note that it took an average of 33
s to calculate the strain per conformation per core on an Intel
i5-1038NG7@2.0 GHz, about 800 times slower than the
population-based method, and impractical should we wish to
expand it to ultralarge, multiconformer libraries.

■ DISCUSSION

Applying a strain energy filter to docked compounds improves
docking hit rates and integrated enrichment for most targets, at
least retrospectively. This is true in cases where both ligands
and “decoys” derive from prospective docking screens where
the molecules have been shown to bind or not bind by
experiment, respectively (as with AmpC and the D4 dopamine
receptor), and for cases where the putative nonbinders are
property-matched decoys of the sort found in the DUD-E
benchmarks. The strain filter improves hit rates and enrich-
ments because the decoy molecules, both experimental and
calculated, often find their best-fitting conformations from
among those that are relatively strained, compared to the true
ligands that can more often complement the receptor in
unstrained conformations.
In their seminal paper on conformational strain in docking,

Tirado-Rives and Jorgensen argued that the errors in both the
strain calculations and overall docking scores were so high,
over the 6 kcal/mol or so that defined the range of docking
binding energies, as to make even rank ordering a dubious
proposition. While this likely remains true, our results may be
reconciled with theirs by distinguishing between rank ordering,
the focus of their study, and enrichment, the goal of this one.
To improve docking enrichment, a strain energy does not need
to be even included in the overall docking score; it can be used
to filter out molecules that only fit well because they adopt
strained conformations. Because these fall more often among
decoys than the true ligands, this filter may typically improve
docking results.

Several caveats merit airing. Most importantly, this study is
retrospective, and the true value of a new docking tool will
often only emerge in prospective studies. Mechanically, we
calculated Log AUC using the compounds that remained after
strain filtering, while those filtered out were not included.
Another way of calculating Log AUC would be to include all of
the compounds, both ligands and decoys, whether filtered or
not. We chose the former to be consistent with the real
practice of docking, where one only tests compounds that
survive filters and are prioritized by high ranks. Naturally, a
strain filter is only needed because library molecules have been
calculated in strained conformations.43,44 If these were
recognized before docking, the need for this filter would
disappear. Indeed, Omega (OpenEye Software, Santa Fe),
which we use to precalculate the docking flexibase,45 offers the
opportunity to do just that, using a similar statistical potential
on which we draw here. In our hands, implementing this at the
time of conformation generation undersampled receptor-
competent conformations, reducing retrospective hit rates. It
may be possible to overcome this in subsequent implementa-
tions. We note that rather than using energy strain values as
filters, one could simply count violations of allowed ranges.
Whereas this would have the advantage of not claiming too
much from what are necessarily approximate strain values, it
would not easily sum different levels of strain encountered
among the different torsions, something to which an energy is
well suited. That said, owing to different assumptions and
conditions underlying the strain calculation (including no set
temperature over the crystals in the CSD, sampling biases in
what is crystallized, the effects of crystal packing, the difficulties
of modeling rare torsion angles, and not considering
differences in local torsional preferences between charged
and neutral compounds), we represent strain in “torsion
energy units” (TEUs) and do not add them to the overall
docking score. Finally, the ligand conformational strain used
here could be added directly into the entire docking library,
where it could be applied at the time of docking, and not used
as a postdocking filter. This would have important advantages
and could conceivably be done with methods similar to that
used here. Whether this will be pragmatic for ultralarge
libraries demands further exploration and is outside of the
scope of this study.
These caveats should not obscure the principle observations

of this work: despite ongoing difficulties with rank ordering in
docking,3 a strain energy filter can improve docking enrich-
ment, the first and principal goal of library screening. Especially
in the era of ultralarge libraries, where one suffers from
problems of abundance, stringency filters like strain energy can
be a great advantage by removing lower likelihood candidates;
other such filters can also be imagined. Drawing on a database
torsion angle approach,24,25 the filter we describe is fast and
mechanically reliable, able to treat millions of molecules in
minutes; even from a highly diverse library, only 1 in 200 000
molecules fails to have its torsions matched and an energy
calculated. Applying such a filter to docked conformations may
increase prospective hit rates by eliminating nonbinders that
rank well only by adoption of high-energy conformations. The
software is openly available to the community (http://tldr.
docking.org).
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