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Abstract

Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As
docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and
extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling
techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable
sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in
the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and
1,411,214 decoys of the Directory of Useful Decoys - Enhanced (DUD-E) benchmarking set, at multiple levels of sampling.
Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20000 molecular orientations in the
binding site (and so from about 161010 to 461010 to 161011 to 261011 to 561011 mean atoms scored per target, since
multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for
most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and
restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used
here to improve the efficiency of the code are broadly applicable in the field.
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Introduction

Molecular docking is widely used to predict protein-ligand

complexes[1,2] and to screen large libraries for molecules that will

modulate the activity of a biological receptor. Though it suffers

from well-known liabilities, it has predicted new ligands for over 50

targets in the last five years alone[3–57]. In prospective,

comparative studies with experimental high-throughput screening

(HTS), it has enriched hit-rates by over 1000-fold[58]. While HTS

has illuminated docking false negatives [56]; docking has

correspondingly illuminated false negatives from HTS[3]. Ever

more frequently, docking predictions are tested by subsequent x-

ray crystallographic structures, often confirming the predicted

geometries of the docked complex[7,14,59–65].

Notwithstanding these successes, docking retains crucial liabil-

ities. As it is used to screen increasingly large compound libraries

for new candidate ligands, the speed of the docking calculations

has remained a goal for optimization. The need for efficient

docking programs has become more pressing as the size of the

accessible compound libraries has risen. Whereas docking

campaigns in the early 1990s addressed libraries like the Fine

Chemical Directory (MDL) of about 60,000 molecules, and the

Available Chemicals Directory of about 250,000 molecules in the

early 2000s, the advent of ZINC and related databases[66,67]

increased the number of purchasable molecules for screening to

over 700,000 in 2005 and to almost 20,000,000 molecules of

molecular mass less than 500 daltons today[68]. More crucial still

is the need for sufficient sampling of ligand and protein states in

docking, and of accurate evaluation of the binding energies of

potential protein-ligand complexes. Conformational space grows

exponentially with ligand size, and sampling this space remains

challenging. A key issue is whether docking is sampling sufficiently,

and how increased sampling relates to improved scoring and

outcomes. This includes sampling the internal degrees of freedom

within the ligand as well as sampling ligand poses between the

ligand and the protein receptor.

Several widely-used docking methods have been introduced to

address these problems, and to exploit the opportunities that large

compound libraries present for the discovery of new ligands. The

program FRED[69] exhaustively samples geometries defined by a

regular latice, filters using pharmacophores, and then evaluates the

remaining poses with an energy function. ICM[70] uses multiple

stochastic runs to sample poses to be scored with an energy

function, while GOLD[71] uses a genetic algorithm to sample

poses and includes a variety of scoring functions. GLIDE SP[72]

uses several levels of sampling and scoring, ending with a modified

version of ChemScore with ten scoring terms[73], and GLIDE

XP[74] uses eighty parameters for scoring and is trained to

reproduce binding affinity data for known complexes. Autodock

4[75] and Autodock Vina[76] are different versions of the same

grid-based energy approach with a genetic algorithm to sample

poses. The DOCK series of programs have typically focused on

physics-based scoring functions with relatively few terms and
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sampling by graph-matching between ligand atoms and receptor

‘‘hot-spots’’—points of likely complementarity for a particular

ligand atom. There are two main branches of DOCK, the DOCK

6.x[77] and DOCK 3.x families, of which the former has focused

more on accurate prediction of ligand geometries and adopted a

wider range of scoring functions. Meanwhile, the DOCK 3.x

programs have cleaved more tightly to physics-based scoring

functions with fewer terms, and have focused on optimizing for the

speed necessary to tackle large library screens. It is the latter

program that has been most extensively tested by experiment for

new ligand discovery, and is among the docking programs most

thoroughly tested by direct comparison to prospective HTS, and

crystallographic confirmation, at least in the literature.

DOCK3.5.54 managed a relatively rapid screening of chemical

libraries by efficient sampling of possible orientations and by use of

a flexibase[78] of pre-calculated ligand conformations[79,80]. The

former relied on an implementation of DOCK’s traditional hot-

spot-based graph matching[81,82] which focused the search for

complementary ligand orientations to the protein likely to lead to

favorable fits, while the latter eliminated the need to build ligand

conformations on the fly, especially useful when docking the same

ligand to multiple proteins as the time is saved for additional

screens beyond the first. As we tried to optimize the program

further, however, we found that the sampling of orientations

behaved erratically as parameters were varied. When using

histograms to limit the sampling, the orientations sampled were

always a subset of what was possible at any given distance

tolerance. Changing the histogram parameters always returned

different possible graph clique matches, but did not return subsets

or supersets of the possible orientations made by other histogram

parameters, leading to confusion when trying to explore and

optimize orientational sampling. Similarly we were concerned

about the sampling of ligand conformations in the flexibase. The

main issue was with the recombination of different conformations

generated by OMEGA[83] into new conformations, which had

the potential to create internal steric clashes. These conformations

were often present in DOCK3.5.54[79,80] library screens. A

scheme to filter for conformations without internal clashes in

DOCK3.6[84] was not entirely satisfactory, as these strained

geometries were still generated and the filters were not entirely

successful, leading to effectively good scoring decoy conformations.

Additionally, problems with conformations in the flexibase to be

docked, such as the sampling of aromatic hydroxyls out of plane,

introduced further erors.

Here we explore new algorithms and engineering strategies to

address these problems. We adapt an exhaustive graph-matching

technique[85,86] that ensures we sample all possible matching

graph cliques. By graph cliques we mean superpositions of sets of

ligand atoms on sets of receptor hot-spots (Figure 1A). Now, as we

increase the amount of matches, ligand orientation sampling grows

regularly, predictably and nonstochastically. This allows us to

explore how, and if, increased ligand sampling leads to better

docking performance, as judged by energies and enrichment of

known ligands over matched decoys. This is crucial to understand-

ing whether our core challenges in docking are sampling or scoring.

We further explore whether physically improved calculations of

ligand geometry, using an electrostatic term in the ligand

conformation generation, as well as more realistic sampling of

aromatic hydroxyls, leads to better docking performance. Alert to

the need for efficiency in a method that seeks to rank order the

protein complementarity of 20,000,000 unrelated molecules, we

also explored software engineering for efficient docking, which

ultimately improved the raw speed of the method. What results is a

docking method whose sampling increases regularly and predictably

while retaining its physics-based energy calculation and speed: on

common 2.66 GHz cores, it can reliably dock the 1,400,000

compound library used in DUD-E[87] in as little as 1000 CPU

hours. Given the ready accessibility of multi-core clusters, this speed

allows us to test DOCK stringently using different parameters, on

the DUD-E library of 102 diverse protein targets with a total of

22,805 ligands and 1,411,214 property-matched decoys. Several of

the methods here may find wide application. The new program is

called DOCK3.7[88] and incorporates updates to the DOCK

source code, the flexibase generation program mol2db2 (an update

of mol2 db[79,80]), blastermaster (an updated DOCK Blaster[89])

and other accessory scripts. DOCK remains available as a free

download, with source for all our programs, for academics and non-

profit research institutions. A web-based implementation for those

interested in using it for ligand discovery without investing in a local

installation is also available[90].

Results

Improved and Regularized Sampling of Orientations
Our first goal was to make the sampling of ligand orientations in

DOCK3.7 regular, non-stochastic, and smoothly variable. The

DOCK programs have used a graph matching strategy since the

program’s first inception[81], mapping ligand atoms onto receptor

hot-spots, regions where ligand atoms are likely to bind. In this

scheme, hot-spots and atoms are matched based on internal

distances. In the DOCK3.x program series, an effort to speed and

focus this matching had led to irregular sampling, which made

performance hard to anticipate as variables were changed and

made it impossible to smoothly increase orientation sampling,

reproduce results or optimize docking performance. To overcome

this problem, the algorithm was upgraded to use full graph

matching instead of using histogram binning to reduce the number

of orientational matches found[82] (Figure 1). Full distance

matrices are now used in place of histograms that reduced the

number of potential matches and, therefore, orientations. In this

way, we use a single parameter to control how many orientational

matches are desired, much like that used in DOCK4.0[86,91]. We

do not specify a minimum internal distance parameter; it made

sense when entire small molecules were being matched, but the

current DOCK architecture matches only rigid rings[78–80],

allowing the rest of the molecule encoded in the flexibase

hierarchy to move with respect to that rigid ring positioned in

the binding site. We use an adaptive system where a desired

number of matches is specified, as well as a minimum, maximum

and increment of the distance tolerance. The latter three

parameters are unchanged throughout all these tests and chosen

to start very low (0.05Å) and grow slowly with each iteration,

allowing the first parameter of desired number of orientational

matches to control the docking run. In this way, the orientational

matches found with a match goal of 1000 orientations include all

the matches found with a lesser match goal. Increasing the

sampling by changing this desired number of match goals

parameter will always find all of the old poses as well as additional

poses. Correspondingly, increasing the match goal always main-

tains or improves the score of any docked molecule (Figure 2).

Also, the orientations tested are always identical—the algorithm is

deterministic and non-random at all parts of the sampling.

We wanted to know how actual docking performance—

geometry prediction and enrichment over decoys—varied with

sampling; just because we can guarantee sampling has increased,

does not translate to improved docking performance. Though

every docked molecule will find a better scoring pose with a higher

level of sampling, a situation where decoys find better poses

Orientation Sampling in Docking
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relative to the ligands would decrease the performance in terms of

enrichment. For 13 PDB[92] structures of Glutamate receptor

ionotropic kainate 1 (GRIK1) (1VSO, 2F34, 2F35, 2PBW, 2QS1,

2QS2, 2QS3, 2WKY, 3C31, 3GBA, 3GBB, 3S2V, 4DLD), the

ligands were extracted and compared to their docked poses based

on the heavy atom root mean square deviation (RMSD) using the

Kuhn–Munkres algorithm[77] to account for symmetry. With

these 13 ligands, as sampling was increased from 50 through

20000 match goals, the mean RMSD went from 3.1 Å to 2.7 Å to

2.6 Å to 2.9 Å to 3.0Å. By this criterion, although docking scores

always improved with sampling, RMSD to crystallographic poses

did not. However, when we quantified the correctness of the

docked poses by defining a set of critical contact atoms, judged to

be important in the ligand binding to the protein by being present

in most, if not all, of the ligands, matters improved. Three atoms;

two carboxylate oxygens and an amide nitrogen, were chosen; the

carboxylate atoms interact with Arg95 and Thr90, the amide

nitrogen interacts with Thr90, Pro88 and Glu190 of GRIK1

(Figure 3A). For the docked DUD-E ligands of GRIK1 the median

critical contact RMSD drops from 3.9 Å to 2.8 Å to 2.2 Å to 2.1 Å

to 1.9 Å as orientational sampling increases from 50 to 20000. 86

of the 99 docked known ligands showed a decreased critical

contact RMSD as orientational sampling increased (Figure 3).

Large scale benchmarking for enrichment
The DOCK3.x series of programs[79,80,84,89,93] has had as

its major focus the screening of large compound libraries for new

ligand discovery. To support this effort, and those of others, we

have introduced benchmarking sets that measure the ability of a

docking program to enrich known ligands from decoy molecules

that are matched to the ligand in physical properties such as

molecular weight, charge, and hydrophobicity, among other

terms. Perhaps the most ambitious of these sets is the DUD-E

collection of 102 targets, with 22,805 literature-annotated ligands

(a mean of 223.6 per target), and 1,411,214 property-matched

decoys[87]. To investigate the performance of the new matching

method, we screened the full 102 DUD-E targets against their

corresponding ligands and decoys.

In 77 of the 102 DUD-E systems, increased sampling improves

enrichment (Figure 4). This may be judged by the area under a

Receiver Operator Characteristic (ROC) curve, or by enrichment

of ligands over decoys at the 1% point of the docking ranked list

(often referred to as the EF1 statistic), or, as we prefer, by an

adjusted logAUC[93]. Adjusted logAUC is the area under the

ROC curve, where the x-axis is logarithmic to favor early ligand

enrichment, combining the strengths of the AUC and EF1 metrics.

The area under a random curve is subtracted from the logAUC so

that an adjusted logAUC of zero represents random enrichment,

while positive numbers represent enrichment of ligands over

physically-matched decoys. As orientational sampling is increased

from 50 to 500 to 2000 to 5000 to 20000 poses, the mean adjusted

logAUC for all DUD-E systems rises from 13.1 to 14.7 to 16.0 to

16.6 to 17.4 (the same monotonic trends are apparent for linear

AUC and for EF1, Tables S3 and S4). Thus, the mean over 102

protein targets with more thorough sampling of ligand orientions

leads to better docking performance, as judged by enrichment of

many known ligands over many more property matched decoys.

This was not something we could previously investigate in a

regularly variable manner.

Admittedly, though mean performance over all systems

improved with greater sampling, this was not always the case for

every system; there were 25 targets where increased sampling had

little effect on enrichment (Figures 4A and C), or even reduced it

(Figures 4B and D). In cases where the effect of increased sampling

on enrichment is negative, it is possible that 1) decoys are finding

Figure 1. Orientational Matching Diagram. A toy example illustrating the matching sphere orientational matching algorithm. A) Toy receptor
with 4 matching spheres shown as circles and a toy ligand with 3 spheres shown as stars. B) The distance matrices constructed from these spheres are
show in the upper right. C) The 2 possible orientational matches of the ligand spheres (as stars) onto the receptor spheres with a distance tolerance
of 0.1 (assuming 3 matching nodes are used, in 3D this is usually 4). D) The additional two orientations produced when the distance tolerance is
raised to 0.2.
doi:10.1371/journal.pone.0075992.g001
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Figure 2. DOCK score effects with varying degrees of orientational sampling. The effect of changing the desired number of match goals, or
orientational samples, on the DOCK score of both the ligands (in blue) and decoys (in red). 5 comparisons of the 4 levels of match goals are shown for
Glutamate Receptor Ionotropic Kainate 1 (GRIK1) in A through E.
doi:10.1371/journal.pone.0075992.g002
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Figure 3. DOCK score effects with varying degrees of orientational sampling. A) The crystal ligand from PDB Code 1VSO. The critical
contacts are defined as 3 atoms from the ligand crystal structure making key polar contacts with the protein, highlighted with spheres. 4 poses of
ZINC00013260 are shown in B through E, with increasing sampling going from left to right, better DOCK scores and lower critical contact RMSD (with
the exception of the critical contact RMSD rising from Match Goal of 50 to 500). Protein is shown in gray, crystal ligand shown in purple and
representative docked pose shown in green, with hydrogen bonds drawn according to UCSF Chimera defaults. An additional molecule,
ZINC00374553, is similarly shown in subfigures F through I, with a similar trend of increasing DOCK energies and decreasing critical contact RMSD.
doi:10.1371/journal.pone.0075992.g003

Figure 4. Enrichment changes with varying degrees of orientational sampling. A) The histogram of changes between match goals of 50
and 20000 over all 102 DUD-E systems is shown. B) At right, the histogram of which of the five match goal levels produced the best enrichment for
each of the 102 DUD-E targets. For each enrichment produced by another match gal, the histogram of the differences is shown to the left.
doi:10.1371/journal.pone.0075992.g004
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unrealistic poses, 2) the scoring function has not properly captured

some aspect of the system, 3) some decoys may actually be ligands,

or 4) a combination of these possibilities. One example is MAP

kinase-activated protein kinase 2 (MAPK2), where the enrichment

gets worse with more orientational sampling (Figure 5C). When

examined, the ligands find better energies (Figure 5A) and the

poses get better, as judged by critical contact RMSD, but the

decoys improve even more in energy than do the ligands. For any

given target, the level of sampling should be carefully checked

against enrichment and other indicators of success before

prospective screening is undertaken.

Speed Optimizations
The focus on screening multi-million compound libraries has

motivated rapid calculations in the DOCK3.x programs, but as

ambitions increasingly turn to docking across families of proteins

or even the proteome[89] the need for further optimization

remains pressing. Whereas previously we have investigated

methods to optimize efficiency in sampling orientations[82] or

conformations[79,80,94] or in their scoring[95], here we investi-

gated compiler-level optimization and code efficiencies to increase

raw speed. Whereas this may seem inelegant, it has the virtue of

being applicable to most other programs.

We investigated systematic optimization of compiler flags for the

code. We found that four flags led to measurable increases in

performance, with several increasing speed by between 2% and

26% (Table 1); overall, compiler optimization improved speed by

41%. A second major improvement came from optimizing energy

scoring grids. These grids pre-compute receptor energy potential

functions, such as van der Waals and Poisson-Boltzmann-derived

electrostatic potentials. These grid potentials, combined with an

atomic property like atom type or charge, are multipled into

energies. In this way, each atom is scored for each of the energy

functions desired. To look up grid potentials for ligand atoms that

do not fall precisely on a lattice point, trilinear interpolation is used

between neighboring points for atoms that fall in-between lattice

points, as most do. Such interpolation at run time turns out to be

costly, but we found that we could pre-compute large portions of

the calculation before docking began, saving substantial calcula-

tion time when scoring, at the cost of memory usage. Further time

was saved aligning continuously in memory all 8 precomputed

values associated with every trilinear interpolation cube for the

cache controller. For instance, with the optimized interpolation we

can look up over 1 million atom grid scores per second in the

GRIK1 system, whereas before optimization only 300,000 grid

lookups per second were performed (Table 2). As this step was rate

determining for many systems, it contributed substantially to the

2.5 to 3-fold overall speed-up realized for the optimized code over

the DOCK3.5.54 code (Table 2). Because most docking

programs[72,75,76,81,85,95–99] use a grid-based approach for

at least initial scoring, such a stratagem may be widely applicable.

What results is a program that is suitable for large-scale library

screens. As described above, ligand enrichment against decoys

across the DUD-E systems already achieves an adjusted logAUC

of 13, or an EF1 of 11.6, at a match goal of 50 orientations. At an

orientation goal of 500, the adjusted logAUC and EF1 values

improve to 14.8 and 12.8, respectively, and further rises as

matches rise further. A point of diminishing returns is eventually

reached, undoubtedly because the higher orientation numbers are

achieved by lower stringency matching of atoms to receptor hot-

spots, leading to poorer correspondence between the ligand atoms

and the receptor hot-spots. If we take 500 ligand orientations as a

sensible level of sampling, screening 1.5 million molecules in the

lead-like available-now set in ZINC[68] would require about

2700 hours on a single core (about one ligand every 5 seconds). If

this remains a substantial investment, it is less than two days on a

small cluster of 100 cores, and an afternoon on a cluster of 1000

cores, a size that is increasingly common. If one wanted to take on

a larger number of systems, it is a simple matter to reduce the

orientation sampling goal for the program—a goal of 50

orientations, which still performs relatively well against the

DUD-E set, would only demand 1.5 hours to screen 6.6 million

lead-like compounds against a single representative target for a

1000 core cluster.

As an aside, we note that calculation time did not scale linearly

with the orientation goal. Thus, for the 50/500/2000/5000/

20000 matches, the mean calculation time over the 102 DUD-E

targets was 15.9/34.7/104.0/243.7/810.3 core hours (Table S2).

This likely reflects the greater likelihood of finding productive

poses using higher-stringency of the lower matching goal; the more

productive poses that are calculated, the more time that must be

spent in scoring them, as clashing poses are quickly discarded.

Mean times across all match goals across all systems in DUD-E are

shown Figure 6, with the three different performance metrics also

shown.

Sampling Ligand Conformations
If the challenges of efficient sampling of conformations and

orientations are widely appreciated in molecular docking, those of

ensuring that ligand conformations are low energy are sometimes

overlooked. They are, however, important, as high energy

conformations are essentially decoys that can obscure the presence

of more favorable poses. Among the features that can contribute to

such high-energy ligand conformations is the neglect of electro-

static energies in ligand conformations, which are often ignored

owing to concerns about overweighting the term in an effectively

low dielectric calculation[100](Figure 7). Indeed, conformations

that neglected electrostatics have been previously used for all

molecules in the ZINC[101,102] DUD[103] and DUD-E[87]

ligands databases (since in the DOCK3.x programs ligand

conformations are pre-calculated and docked as a flexibase,

relatively expensive ligand calculations are affordable). To explore

the effect of the electrostatic term on docking, we re-built all

ligands and decoys for all DUD-E systems with both the

MMFF94S[104] forcefield in OMEGA[83,105] and with the

MMFF94S_noestat forcefield, where electrostatics are turned off.

To our knowledge, this is the first time this has been attempted on

such a large scale (over 1.4 million ligands and decoys), and the

first time it has been judged by docking all the resulting

conformations and computing enrichments.

With electrostatics turned on for compound conformation

generation, enrichment of ligands over decoys improved in 60% of

DUD-E targets (62 out of 102), shown in Figure 8E. However, in

the 40% of targets where enrichment diminished, it diminished

further than it had increased in the 60% of the systems where it

improved. The mean enrichment over DUD-E was essentially

zero (Figure 8E, green bars). On inspection, many of the systems

where performance declined on adding electrostatics to the ligand

conformational energy calculation had charged ligands leading to

relatively high-magnitude contributions to the conformational

energy from the electrostatic term. This is important because we

only calculate conformations within a certain energy window,

which is arbitrarily set[100], but as the absolute magnitude of the

energies of the conformations rises, so will the difference between

them, and so too should the energy window (Figure 7). These

effects were explored in a subset of 17 DUD-E targets (ACE,

ACES, ANDR, COMT, DPP4, DYR, FA10, FA7, FABP4, FPPS,

GRIK1, PYRD, THRB, TRY1, TRYB1, UROK, XIAP).

Orientation Sampling in Docking
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Figure 5. Enrichment changes with varying degrees of orientational sampling. The effect of changing the desired number of match goals,
or orientational samples, on the overall enrichment of ligands over matched decoys is shown. Three possibilities are shown, A & C) MAP Kinase-
Activated Protein Kinase 2 (MAPK2), where the logAUC goes down with increased orientational sampling, above that is the difference in DOCK

Orientation Sampling in Docking
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Increasing the energy window from 12.5 to 15 kcal/mol for

conformations built with internal electrostatics increased enrich-

ment by a mean of 1.0 logAUC units. Increasing the energy

window further still, to 30 kcal/mol, improved mean logAUC by 3

units. Overall, of these 17 DUD-E targets, 12 were rescued by the

increase in the energy window during ligand the ligand building

procedure (Figure 8E, black bars). Taken together, these results

support the use of ligand internal electrostatics in conformation

calculation, which has, moreover, the added benefit of being

physically more realistic.

Aromatic Hydroxyls
A related challenge emerged in the placement of ligand

aromatic hydroxyls. In previous versions of DOCK3.x[79,80,93,

106] and ZINC[101,102], aromatic hydroxyl protons were usually

placed in high-energy, incorrect conformations, out of the plane of

the ring. This is inconsistent with high-resolution small molecule

structures in the Cambridge Structural Database[107], which

reveals a strong preference for aromatic hydroxyls to be in the ring

plane (Figure 9).

To investigate the impact of such hydroxyl sampling on docking

enrichment, 29 DUD-E targets that had a substantial number of

hydroxyl-bearing ligands were investigated (ADA, ADRB1,

ADRB2, ANDR, BACE1, BRAF, COMT, DEF, DRD3, ESR1,

ESR2, FPPS, GCR, GLCM, GRIA2, GRIK1, HIVINT, HIVPR,

HMDH, HS90A, INHA, KITH, MK01, NRAM, PNPH, PUR2,

SAHH, THB, WEE1). Ligands were built using the MMFF94S

force-field with hydroxyls placed as in the earlier version, or with a

new method that only places them in the ring plane. The latter

improved the adjusted logAUC by 0.78 to 0.88 across the 29

DUD-E targets, depending on number of orientations sampled;

five systems showed much higher improvement (Figure 10). In

these systems, improvement typically reflected better interactions

made by the in-plane ligand hydroxyl than could be made by its

out-of-plane counterpart.

Other Improvements
Several other changes made the docking output more extend-

able and widely usable. Full atom type and bond information is

now encoded in the ‘‘flexibase’’ (i.e., the precalculated molecular

conformations in the library). Previously, to save disk space, the

molecular library had been represented in a format that sacrificed

ligand topology, among other features, for a highly compressed

format that could support the millions of molecules and billions of

conformations in a typical lead-like or drug-like docking library

from ZINC[79,80]. With the increased disk capacity of modern

computer systems this is no longer necessary. By storing full atom

and bond information, the flexibase may now be directly

understood and interrogated, and the docked output has lost

none of the information of the original mol2 file and may be

readily converted to other formats[108]. Correspondingly, fields

have been added to the output to support anticipated new

directions in scoring and docking information, such as weighting

ligands by internal energies that we are now beginning to

calculate. Additionally, the scoring breakdown for each atom

and for each scoring term can be written to the output file,

enabling further analysis and visualization. Finally, multiple top-

scoring poses per molecule may now be written out, not only the

very top-scoring pose as was previously the case. This will often

enable a much richer investigation of the docking results, and the

consideration of ensemble energies; it is limited only by memory

and disk space.

A bump filter using simple distance cutoffs embedded into a grid

has been a part of the DOCK line of programs for a long time.

The bump grid itself was removed in this version and replaced by

a calculation of the van der Waals energy. If the repulsive term for

any portion of the ligand is very high, it is certain that further

exploring that orientation and/or conformation is unlikely to yield

a good energy score. Even if it does yield an overall total good

score due to a very favorable electrostatic interaction caused by

placing oppositely charged atoms near each other, it is not a

physically realistic pose.

We ran each DUD-E target with 500 orientational samples

through a bump limit of +10 kcal/mol, 20, 50 or no limit (not

using the repulsive filter). Favorable energies are negative. The

mean difference in logAUC was 0.3; only 8 DUD-E targets had a

logAUC difference higher than one. Of these, one extreme

example of a logAUC change is shown in Figure 11. In these

targets that are sensitive to the bump limit, there was a charged

ligand that needed to be placed slightly inside the repulsive radius

of the protein atom to obtain a favorable electrostatic and overall

energy. However, the time is essentially unaffected by the bump

limit, showing only a small improvement with lower limits

(Figure 11C). Importantly, the speed of the docking procedure is

roughly doubled simply from using a bump limit at all. For all

other tests in this study a bump limit of 50 is used, though the

default could likely be as low as ten for many systems.

A further analysis of the Thyroid Hormone Receptor Beta-1

(THB) target shown in Figure 11 was done on poses of the ligands

found. Importantly, many poses of the known ligands were not

found with the low bump limits, only 26 of the possible 103 ligands

had a pose identified at all. As the bump limit was raised to

20 kcal/mol, 50 or no limit this number rose to 41, 67 and finally

102. Again, this is the extreme case, as the other 94 DUD-E

targets did not show this dependence.

Discussion

Three observations emerge from this work that may be broadly

useful to other investigators in the field. First, once we regularize

our sampling of orientations, it becomes apparent that increased

energies for ligands and decoys for that target. B & D) Protein Farnesyltransferase/Geranylgeranyltransferase Type I Alpha Subunit (FNTA), where the
logAUC does not change significantly with increased orientational sampling, again the difference between the ligand and decoy energies is shown
above in the upper right. E), GRIK1 is shown, where the logAUC goes up with increased orientational sampling.
doi:10.1371/journal.pone.0075992.g005

Table 1. Compiler Optimizations.

Flag Percent Speedup

-O2 or -O3 or -O4 26%

-fastsse 2%

-Mipa = fast,inline:10,libinline,libopt,vestigial 10%

-Mfprelaxed 2%

All other flags 1%

Total 41%

doi:10.1371/journal.pone.0075992.t001
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sampling of poses improves docking performance. This is

supported both by enrichment of ligands over decoys and by

capturing canonical interactions. Second, this algorithmic change

was accompanied by code optimization—using techniques that

may be widely applicable—that increased the speed of the

program three-fold; this will be important as the field takes on

ever-more ambitious library screening campaigns. Third, improv-

ing our physical treatment of ligand conformations—including

internal electrostatics energies when building them, and insisting

on low-energy rotamers for aromatic hydroxyl hydrogens—not

only improved overall performance, but did so in a way that

establishes a foundation for further development of physics-based

scoring in molecular docking.

A longstanding concern in not only ligand docking but in other

modeling techniques, such as protein comparative modeling, is

whether increased sampling will necessarily improve performance.

After all, if the scoring functions have serious liabilities it could well

be that increased sampling will simply exploit these, leading to

better scoring but worse enrichment, owing to decoy molecules

scoring even better than the true ligands. Broadly this was not

what we observed: despite the well-known liabilities in docking

scoring functions, in three quarters of the 102 DUD-E targets

enrichment rose with greater sampling. This suggests that the

scoring function, with all of its gaps, approximations, and errors, is

capturing important aspects of ligand recognition, even in the face

of a benchmarking set where every ligand is matched with 50

property-matched decoys. Admittedly, performance remains far

from perfect: in 23 DUD-E targets enrichment did not rise with

greater orientation sampling, and in almost all of the 102 targets

improvements in enrichment plateaued after about 2000 orienta-

tions had been sampled. This reflects the limitations on our

current scoring function.

A key to exploring the variation of enrichment with sampling

was a code base optimized for speed. Whereas it may seem easy to

optimize compiler flags and grid interpolation, as opposed to

fundamental algorithmic efforts, the result is a program that is

three-fold faster. This not only enabled extensive testing on a large

and challenging benchmark, the DUD-E set, but also ambitious

prospective campaigns against multiple targets. For instance, a

longstanding goal in chemical biology has been to screen the

world’s chemistry against all of the pharmacologically relevant

targets. This remains infeasible for empirical screening, but it is

feasible, even today, for docking. To dock the 2 million ZINC

lead-like available-now compounds against the 3000 or so

pharmacologically interesting targets for which structures are

available, with 50 orientations sampled per ligand, would demand

about seven months for a 1000 core cluster, which is no longer

considered a large cluster in the field.

If it’s true that the limited improvement of ligand enrichment

with increasing sampling reflects limitations in our current scoring,

the fact that it does improve monotonically, in most systems,

supports the idea that there is room to build upon the current

physics-based scoring. Whereas scoring optimization was not the

major focus of this work, building ligands with internal electro-

statics, and with low-energy aromatic hydroxyl rotamers, ulti-

mately improved enrichment, supporting this idea. Perhaps more

important still, including electrostatics and, more broadly, ligand

internal energies[109], provides a foundation for including crucial

physical terms now missing from the scoring function. Exploring

such terms is enabled by the method developments and

optimization described here.

Given that the main purpose of DOCK 3.7 will be prospective

screening of fragment[110] and lead-like[111] subsets of ZINC,

the problems with electrostatics in screening drug-like[112] ligands

can be considered less important. Most of the problems appear

isolated to very large, peptide-like and drug-like ligands, not

usually attempted during prospective virtual screening campaigns.

When targets with ligands in the lead-like or fragment-like range

were examined, no problems with building ligands with the full

MMFF94S energy function were encountered.

Conclusions and Future Work

This work has explored several ligand sampling parameters used

in docking across the 102 DUD-E test targets[87]. DOCK3.7

served as an ideal platform for these tests, as many sources of error

were removed, allowing ‘‘apples to apples’’ tests. Additional

orientation sampling, while expensive, improves most DUD-E

systems, and prospective users of docking software should sample

as much as they can reasonably afford given the resources

available. Using a bump limit based on van der Waals score to

prune out bad, repulsive conformations can double the speed of

the docking procedure, similar to the ideas of dead-end

elimination or A* searching from computer science[113]. These

lessons will guide future users of DOCK3.7 but could be applied to

all docking software and systems. In building ligands, we

concluded that careful attention should be paid to hydroxyl

positions. Even though they may seem small, they can matter a

great deal for some targets in terms of enrichment. The final lesson

for building ligands is that the full MMFF94S force field can and

should be used, as it improves most systems. These lessons for

building ligands will be applied in future releases of ZINC[102],

but are also relevant for anyone building large collections of

ligands for future docking.

Since the steps of ligand library generation and docking are

separated in the docking pipeline presented here, it could also be

used to test alternate methods for building ligands, including

Table 2. Speed and Memory Comparison between DOCK3.5.54 and DOCK3.7.

Code (Match Goal) Memory Atom Grid Lookups Per Second Total Clock Time

DOCK3.5.54 900 Mb 300,000 10 minutes

DOCK3.7 (50) 140 Mb 330,000 0.7 minutes

DOCK3.7 (500) 140 Mb 980,000 2 minutes

DOCK3.7 (2000) 140 Mb 1,070,000 6.6 minutes

DOCK3.7 (5000) 140 Mb 1,030,000 16.7 minutes

DOCK3.7 (20000) 140 Mb 590,000 51.3 minutes

All computations done on a 2.67 GHz processor, for GRIK1 ligands.
doi:10.1371/journal.pone.0075992.t002
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replacements for OMEGA[83,105] like DG-AMMOS[114] or

Frog2[115]. Other procedures for computing partial charges of

ligand atoms and ligand desolvation terms besides AMSOL[116],

like QEQUIL[117], PDB2PQR[118] or AM1BCC[119], could be

tested. Also, since building the ligands for these systems is a time-

consuming process, once built many docking parameters and code

changes can be explored and examined on a fast basis. The code

can dock all ligands and decoys to their DUD-E targets in as few as

11 hours, but longer and more extensive tests take thousands of

hours. On a cluster of 500 computers, a full set of tests at high

levels of orientational sampling take as little as 8 hours; as

computers get faster and clusters grow, this time will only come

down.

One expansive area of future research is to incorporate changes

to the DOCK scoring function presented here. Since all ligands

and decoys are pre-built, changes to the scoring function are very

fast to test. DOCK3.7 has many features to make further energy

function modifications easier. These are primarily 1) many output

poses can be saved, though this uses additional disk space 2)

atomic breakdowns of each part of the overall score are saved in

the output file and 3) integration of the output file in mol2 format

with the ViewDock module in UCSF Chimera[120]. The 102

DUD-E targets were prepared here in a completely automatic

fashion from PDB codes[89], and the automatic docking

procedure was improved and will also be an area of future

improvement. Testing and using molecular docking systems

remains an important area of future research, and using a very

fast system allows full parameter explorations and guides future

large database builds and prospective screens.

Materials and Methods

Protein Target Preparation
Target preparation for docking proceeded in a new protocol

derivative of the DOCK Blaster pipeline[89]. The be-blasti

routine of DOCK Blaster was used to download the PDB codes

for each DUD-E target[87], the list of ligands, cofactors and ions

was modified to correctly account for all targets in DUD-E without

intervention. Previous methods for protonation of sidechains have

been replaced with REDUCE[121] as it was the most adaptable

program, capable of protonating only sidechains that are

requested and to not move heavy atoms during the protonation

procedure. CHEMGRID[122] is used to make the van der Waals

grid using an AMBER forcefield[123] for the receptor; SOLV-

MAP[93] is used to calculate a ligand desolvation grid. Protein-

ligand electrostatics is calculated using QNIFFT[124,125], a

version of DelPhi[126]. QNIFFT improved performance on

DUD[103] slightly as compared to preparations with DelPhi,

likely due to the increased default grid size of 193 from 179.

SPHGEN and related programs are used to place the receptor

spheres used in the matching routine[81]. The general pipeline for

placing matching spheres is to use the crystallographic ligand

heavy atoms as the first set of spheres and to add nearby spheres

generated by SPHGEN until a set number is reached, for further

details see[89]. Cofactor parameters were taken from previous

versions of DUD[103] and DUD-E[87] as is, except for the

parameters for the COMT cofactor S-adenosylmethionine, which

were modified to properly protonate the sulfur moeity. All parts of

the new protein target preparation script are written in Python.

Small Molecule Ligand Preparation
There are many steps in preparing the many conformations of a

ligand for flexible ligand docking to a receptor. Many of the steps

here were identical to the steps in the ZINC processing

pipeline[101,102]. CORINA[127] is used to produce an initial

3D conformation from input SMILES, AMSOL is used to

compute partial charges and ligand desolvation terms[116], and

OMEGA[83,105] is used to enumerate multiple 3D conforma-

tions. The biggest changes are to the procedure for collecting

flexible ligands for use during docking. Previously, mol2db[79,80],

an implementation of the flexibase concept[78], was used to collect

ligand conformations for docking. The flexibase concept, in short,

uses a collection of conformations built around a single rigid

component, often a ring, to represent ligand flexibility. In mol2db,

each part of the molecule stemming from the rigid component was

Figure 6. Speed versus different measures for five levels of
orientational sampling. Speed measured in mean time in hours
across all 102 DUD-E Targets against three measures of docking
performance: Adjusted logAUC, AUC and EF1. Data shown for the full
MMFF94S energy function used in ligand bulding (Green Squares) as
well as the energy function with electrostatics turned off (Orange
Diamonds).
doi:10.1371/journal.pone.0075992.g006
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independent, which represented a speedup in terms of time, but

many conformations found during with DOCK 3.5.54[79,80]

were energetically unrealistic, often internally clashing. DOCK

3.6[84,93,106] avoided this problem by implementing runtime

clash checking to find a slightly worse pose, as judged by docking

score, but one that did not have an internal clash. However, this

procedure was limited to simple distance checks and often still

produced bad poses.

To improve this system, mol2db2 was written, with a new

hierarchy format derived from the original flexibase concept[78].

The new hierarchy format tracks the input conformations, and

only docks complete input conformations instead of ones that have

been pieced together from different input conformations. In early

testing on the Directory of Useful Decoys (DUD)[103], we found

that some targets needed additional input conformations repre-

sented in order to appropriately sample the target. For this reason,

the new pipeline uses a lower RMSD cutoff in OpenEye

OMEGA[83,105] (0.4 Å now as opposed to 0.8Å) and more

output conformations (2000 versus 600) than before.

Hydroxyls are reset and rotated inside mol2db2 to be in plane

when connected to SP2 carbons or at 3 equiangular positions

when connected to SP3 carbons. Except for hydroxyl resets and

rotations, all input conformations are stored for later scoring

during docking. The rigid component is typically a ring structure

that serves as the basis for which the other atoms in the ligand

move relative to. Heavy atoms in the rigid component are used for

orientation matching during docking. As before, partial charges

and ligand desolvation energies are calculated for only one input

conformation per set of conformations for a given molecule. As

opposed to the previous method[80], mol2db2 preserves atom

typing and bond information according to the TRIPOS mol2

format (http://www.tripos.com/mol2/atom_types.html) for each

ligand.

The.db2 file format used as output from mol2db2 and input for

DOCK3.7 is documented on the Shoichet lab wiki: http://wiki.

bkslab.org/index.php/Mol2db2_Format_2 including sample lines

for reading/writing for various programming languages. This is

also supplied as Supplementary Information S1 of this paper. The

goal by distributing this format freely is to encourage others to

write code that can read/write or modify the files for their own

docking programs or other purposes. Future versions of

ZINC[102] will contain and distribute pre-built db2 files for

many purchasable ligands as well as active molecules from

ChEMBL[128].

Molecular Docking
Code for DOCK 3.7[88] is based on DOCK 3.6[84,89,93,106]

with extensive modifications. Mechanically, the code has been

Figure 7. Ligand Building Explanations. At left, several conformations of a ligand built with electrostatics off. At right the same ligand built with
electrostatics on. The MMFF94S energies from OMEGA are shown below each pose. The bottom conformation on either side is the lowest energy
conformation according to either energy function. The scales at either side are the differences in energy score from the best conformation to the
shown conformation, this is the energy window used in construction.
doi:10.1371/journal.pone.0075992.g007
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Figure 8. Enrichment changes with electrostatics on or off during ligand building. A & C), the difference in DOCK scores and logROC
curves for Adenosine A2A Receptor (AA2AR), B & D) Fatty Acid Binding Protein Adipocyte (FABP4). E) A histogram illustrating the changes over the
entire 102 DUD-E systems (in black). Over 60 systems do better with electrostatics on, but the mean difference is 0.0 due to the more extreme
differences when electrostatics off ligand builds perform better. In green bars are the changes when the energy window is increased to 30 kcal/mol
for the 17 poorest performing systems. F) Gene names for the most extreme cases where electrostatics off ligand builds perform better, with their
mean logAUC difference. Blue systems are proteases, 6 of the 15 DUD-E protease systems are in this table.
doi:10.1371/journal.pone.0075992.g008
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rewritten in FORTRAN95 with 2003 extensions. As DOCK 3.6

before it, DOCK 3.7 uses the libfgz C library to read and write

gzipped files. Many algorithmic details have been updated in this

process. The new db2 file format is used as input to DOCK 3.7,

preserving input conformations, atom typing and bond informa-

tion. This allows valid mol2 files to be generated as output. The

histogram binning steps of the matching algorithm[82] have been

removed in favor of a complete matching algorithm in the style of

DOCK4[86]. Orientations of the ligand into the receptor can be

generated using a single parameter of distance tolerance—the

difference between the distances between the matched pair of

points. A more tolerant parameter leads to more matches (and

therefore more orientations of the ligand in the receptor) but

always includes the matches found with a lower distance threshold.

Ligand matching spheres are heavy atom positions of atoms in the

rigid component. Receptor matching spheres can be specified by

any positions within the binding site. During automated docking

preparation[89], receptor spheres are placed at the crystallo-

graphic ligand heavy atom coordinates and at other nearby ‘‘hot-

spots’’ identified by SPHGEN[81]. As before, limits can be placed

on how many distances must match before an orientation is

generated. Throughout this work, four was the minimum and

maximum number necessary, requiring that all 6 distances

specified by the four points at the corners of tetrahedra are within

the distance tolerance.

Additionally, the ability to save multiple top poses of a ligand is

now implemented, with almost no speed penalty up to 100 poses.

Above that disk access times can begin slow down the docking, but

the option to save any number of top poses remains available. The

top poses are kept using an insertion sort by score, which incurs a

small speed and memory penalty.

For speed and memory usage, grids can be trimmed to the bare

minimum necessary for docking. All grids are allocated dynam-

ically so that only the input files must be changed; code does not

need to be recompiled to run different grid sizes. This strategy uses

much less memory than using larger grids. Each docking job

completed here used less than 250 megabytes of memory.

DOCK3.7 output consists of a file containing information about

each small molecule as well a file containing the TRIPOS mol2

(http://www.tripos.com/mol2/atom_types.html) conformation of

Figure 9. Hydroxyl dihedral distribution. A) Distribution of dihedral angles in radians for hydroxyls adjacent to any aromatic six-membered rings
in the Cambridge Structural Database[133]. Inset images show a phenol with the dihedral angle marked, B) is an example of off-planar aromatic
hydroxyls produced by DOCK3.5.54, DOCK3.6 or in this paper as the ‘‘No Reset’’ option, C) is the Reset Hydroxyl version. The bin from 3.1 to 23.1 is
shown only at left.
doi:10.1371/journal.pone.0075992.g009
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Figure 10. Effects of resetting aromatic hydroxyls. Changes in DOCK score and logAUC across several different orientational samplings shown
for 2 systems: A & C) COMT B & D) ESR2). E) Mean changes shown across the 29 systems tested with any of the 5 match goals (20000, 5000, 2000, 500,
50). The mean over the 29 DUD-E targets with hydroxyls is also shown, with the highest or lowest difference over any of the 5 match goals shown
with black error bars. The worst mean difference in favor of No Reset being better was 0.24 logAUC for BRAF, the worst difference for any match goal
is SAHH of 0.53 logAUC for a Match Goal of 500.
doi:10.1371/journal.pone.0075992.g010
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each small molecule relative to the protein receptor. Multiple

poses and per-atom scoring breakdowns can also be included in

this output file, at the cost of disk space and time required. UCSF

Chimera remains the preferred visualization tool to use with

DOCK, with the built-in ViewDock tool[120], though visualiza-

tion with PyMOL is also possible[129] and the mol2 output files

are likely usable with other molecular graphics programs.

Though it may only be of special interest, some readers may

find additional technical details of the optimizations made useful.

The optimization techniques generally fell within four categories:

1. Precomputation 2. attention to data structure layout to

accommodate the underlying memory architecture of the com-

puter 3. changes to the underlying operating system to better

accommodate the needs of DOCK and 4. trial and error with

various heuristic based compiler switches.

One optimization was to precompute and store as much

information about the trilinear interpolations as possible before

docking is executed. These computations take less than a few

seconds but come with a significant time savings later. The only

cost is additional memory usage as eight times the memory is

necessary. Furthermore, special attention was paid to the memory

layout and access patterns of this precomputed data so as to

maximize availability in local CPU cache. This amounted to

reorganizing the 3 dimensional grid of data and various access

loops to maximize spatial and temporal locality.

Next, given the size of these 3 dimensional data structures, and

the inevitable need to access data representing the periphery of the

binding cleft, a sizable amount of execution time was discovered to

be spent handling virtual memory page table exceptions. This was

minimized by changing the Translation Lookaside Buffer (TLB)

page size within the Linux kernel from 4 KB to 2 MB. Lastly, we

optimized the build procedure to include only compiler optimi-

zations known to benefit execution time as not all compiler

heuristics benefit every application. For those interested in the

complete compiler optimizations we applied, they are: ‘‘-c -

byteswapio -Mallocatable = 03 -tp px-64 -gopt -O3 -fastsse -

Minline -Mipa = fast,inline:10,libinline,libopt,vestigial -Mun-

roll = c:8,m:4,n:8 -Mfprelaxed -Mvect = sse,assoc,altcode,short -

Mcache_align -Msmartalloc = huge’’. These were used with the

Portland Group FORTRAN compiler, as it produced the fastest

compiled code[130]. Despite the sophistication of the Portland

group v9.0.4 vectorizing compiler, development time was also

invested inspecting the assembly code of critical loops and

modifying the FORTRAN code to ensure vector instruction

invocation.

Critical Contact Analysis
For the purposes here, we examined the crystallographic ligand

and found the critical contacts made with the protein. These few

atoms are used with an RMSD algorithm where any element of

the same type can match to compute a critical contact

RMSD[131,132]. This RMSD comparison uses the Munkres-

Kuhn or Hungarian algorithm, as used by DOCK6 to evaluate

poses[77]. When comparing these critical contact atoms to the list

of atoms contained in the docked ligands, some small number of

ligands will not have these critical atoms so their RMSD is

undefined. For this reason, medians are reported instead of means.

This avoids the arbitrariness of bias induced from single protein-

ligand crystal structure RMSD; though there is still bias in this

form of analysis, it should be ameliorated over many docked ligand

poses.

Code Availability
As before, all code for DOCK3.7 including the updated

receptor preparation routines and mol2db2 is available for free for

academic and non-profit use with complete source from the

DOCK website[88]. Commercial licenses remain available with a

license fee. Tools utilized during the ligand building procedure

Figure 11. Effects of changing the bump limit on docking performance and time. A & B) Differences for varying the bump limit at a match
goal of 500 are shown here for one DUD-E target, Thyroid hormone receptor beta-1 (THB). This is one of the few cases where ligands and even some
decoys find scores with a higher bump limit than they do with a lower bump limit in kcal/mol. C) The timings for this run and the mean over all 102
DUD-E targets is shown. The bump limit itself does not have a large effect on the time, but using a high bump limit instead of none roughly doubles
the speed of docking.
doi:10.1371/journal.pone.0075992.g011
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which are not available for re-distribution must be acquired from

the appropriate sources. DOCK3.7 Documentation is available at

https://sites.google.com/site/dock37wiki/ under the Creative

Commons Attribution-ShareAlike 3.0 Unported License.

Computing Resources
The Shoichet Lab cluster of over 800 CPUs was used for all

processing. CPU times should be taken with a caveat as the cluster

is heterogeneous, containing 32 bit and 64 bit nodes, with varying

levels of processing speed.
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